26. TAKS REASONING What is an equation of the hyperbola with foci at $(0, -6\sqrt{3})$ and $(0, 6\sqrt{3})$ and with vertices at (0, -8) and (0, 8)?

(A) $\frac{x^2}{64} - \frac{y^2}{108} = 1$ **(B)** $\frac{x^2}{44} - \frac{y^2}{68} = 1$ **(C)** $\frac{y^2}{64} - \frac{x^2}{44} = 1$ **(D)** $\frac{y^2}{108} - \frac{x^2}{64} = 1$

GRAPHING In Exercises 27–32, the equations of parabolas, circles, ellipses, and hyperbolas are given. Graph the equation.

27. $\frac{x^2}{25} - \frac{y^2}{49} = 1$ **28.** $y^2 = 18x$ **29.** $48x^2 + 12y^2 = 48$ **30.** $\frac{x^2}{144} + \frac{y^2}{256} = 1$ **31.** $\frac{y^2}{25} - \frac{x^2}{121} = 1$ **32.** $18x^2 + 18y^2 = 288$

33. TAKS REASONING *Describe* the effects of the indicated change on the shape of the hyperbola and on the locations of the vertices and foci.

a.
$$\frac{x^2}{9} - \frac{y^2}{36} = 1$$
; change 36 to 4
b. $\frac{y^2}{16} - \frac{x^2}{4} = 1$; change 4 to 25

34. GRAPHING CALCULATOR Graph each hyperbola using a graphing calculator. Tell what two functions you entered into the calculator.

a.
$$\frac{y^2}{15} - \frac{x^2}{30} = 1$$

b. $\frac{x^2}{8.4} - \frac{y^2}{5.5} = 1$
c. $5x^2 - 7.5y^2 = 12$

35. \clubsuit TAKS REASONING Give equations of three hyperbolas with horizontal transverse axes and asymptotes $y = \pm 2x$. *Compare* the hyperbolas.

36. REASONING Use the diagram at the right to show that $|d_2 - d_1| = 2a$. (*Hint:* $|d_2 - d_1|$ is constant, so choose a convenient location for (*x*, *y*).)

37. CHALLENGE Using the distance formula and the definition of a hyperbola, write an equation in standard form of the hyperbola with foci at $(\pm 2, 0)$ if the difference in the distances from a point (x, y) on the hyperbola to the foci is 2.

PROBLEM SOLVING

EXAMPLE 3 on p. 644 for Exs. 38–40 **38. TELESCOPES** A satellite is carrying a telescope that has a hyperbolic mirror for which a = 33 and c = 56 (in centimeters). Write an equation for the cross section of the mirror if the transverse axis is horizontal.

TEXAS @HomeTutor for problem solving help at classzone.com

39. SPINNING CUBE The outline of a cube spinning around an axis through a pair of opposite corners contains a portion of a hyperbola, as shown. The coordinates given represent a vertex and a focus of the hyperbola for a cube that measures 1 unit on each edge. Write an equation that models this hyperbola.

TEXAS @HomeTutor for problem solving help at classzone.com

