Graph the equation. Identify the vertices, foci, and asymptotes of the hyperbola.

1. $\frac{x^{2}}{16}-\frac{y^{2}}{49}=1$
2. $\frac{y^{2}}{36}-x^{2}=1$
3. $4 y^{2}-9 x^{2}=36$

Write an equation of the hyperbola with the given foci and vertices.
4. Foci: $(-3,0),(3,0)$
Vertices: $(-1,0),(1,0)$
5. Foci: $(0,-10),(0,10)$
Vertices: $(0,-6),(0,6)$

EXAMPLE 3 TAKS REASONING: Multi-Step Problem

PHOTOGRAPHY You can take panoramic photographs using a hyperbolic mirror. Light rays heading toward the focus behind the mirror are reflected to a camera positioned at the other focus as shown. After a photograph is taken, computers can "unwarp" the distorted image into a 360° view.

- Write an equation for the cross section of the mirror.
- The mirror is 6 centimeters wide. How tall is it?

Solution

STEP 1 From the diagram, $a=2.81$ and $c=3.66$.
To write an equation, find b^{2}.

$$
b^{2}=c^{2}-a^{2}=3.66^{2}-2.81^{2} \approx 5.50
$$

- Because the transverse axis is vertical, the standard form of the equation for the cross section of the mirror is as follows:

$$
\frac{y^{2}}{2.81^{2}}-\frac{x^{2}}{5.50}=1, \quad \text { or } \quad \frac{y^{2}}{7.90}-\frac{x^{2}}{5.50}=1
$$

STEP 2 Find the y-coordinate at the mirror's bottom edge. Because the mirror is 6 centimeters wide, substitute $x=3$ into the equation and solve.

$$
\begin{aligned}
\frac{y^{2}}{7.90}-\frac{3^{2}}{5.52} & =1 & & \text { Substitute } 3 \text { for } x \\
y^{2} & \approx 20.78 & & \text { Solve for } y^{2} . \\
y & \approx-4.56 & & \text { Solve for } y .
\end{aligned}
$$

So, the mirror has a height of $-2.81-(-4.56)=1.75$ centimeters.

AVOID ERRORS

The mirror is below the x-axis, so choose the negative square root.

