EXAMPLE 1 Graph an equation of a hyperbola

Graph $25 y^{2}-4 x^{2}=100$. Identify the vertices, foci, and asymptotes of the hyperbola.

Solution

STEP 1 Rewrite the equation in standard form.

$$
\begin{array}{rlrl}
25 y^{2}-4 x^{2} & =100 & & \text { Write original equation. } \\
\frac{25 y^{2}}{100}-\frac{4 x^{2}}{100} & =\frac{100}{100} & & \text { Divide each side by } 100 . \\
\frac{y^{2}}{4}-\frac{x^{2}}{25} & =1 & \text { Simplify. }
\end{array}
$$

STEP 2 Identify the vertices, foci, and asymptotes. Note that $a^{2}=4$ and $b^{2}=25$, so $a=2$ and $b=5$. The y^{2}-term is positive, so the transverse axis is vertical and the vertices are at $(0, \pm 2)$. Find the foci.

$$
c^{2}=a^{2}+b^{2}=2^{2}+5^{2}=29, \text { so } c=\sqrt{\mathbf{2 9}}
$$

The foci are at $(0, \pm \sqrt{29}) \approx(0, \pm 5.4)$.
The asymptotes are $y= \pm \frac{a}{b} x$, or $y= \pm \frac{2}{5} x$.
SOLVE FOR Y
To plot points on the hyperbola, solve its equation for y to obtain $y= \pm 2 \sqrt{1+\frac{x^{2}}{25}}$. Then make a table of values.

EXAMPLE 2 Write an equation of a hyperbola

Write an equation of the hyperbola with foci at $(-4,0)$ and $(4,0)$ and vertices at $(-3,0)$ and $(3,0)$.

Solution

The foci and vertices lie on the x-axis equidistant from the origin, so the transverse axis is horizontal and the center is the origin. The foci are each 4 units from the center, so $c=4$. The vertices are each 3 units from the center, so $a=3$.

Because $c^{2}=a^{2}+b^{2}$, you have $b^{2}=c^{2}-a^{2}$. Find b^{2}.

$$
b^{2}=c^{2}-a^{2}=4^{2}-3^{2}=7
$$

Because the transverse axis is horizontal, the
 standard form of the equation is as follows:

$$
\begin{array}{ll}
\frac{x^{2}}{3^{2}}-\frac{y^{2}}{7}=1 & \text { Substitute } 3 \text { for } a \text { and } 7 \text { for } b^{2} \\
\frac{x^{2}}{9}-\frac{y^{2}}{7}=1 & \text { Simplify. }
\end{array}
$$

