EXAMPLE 1 Graph an equation of a hyperbola

Graph $25y^2 - 4x^2 = 100$. Identify the vertices, foci, and asymptotes of the hyperbola.

Solution

STEP 1 **Rewrite** the equation in standard form.

$$25y^{2} - 4x^{2} = 100$$
 Write original equation.

$$\frac{25y^{2}}{100} - \frac{4x^{2}}{100} = \frac{100}{100}$$
 Divide each side by 100.

$$\frac{y^{2}}{4} - \frac{x^{2}}{25} = 1$$
 Simplify.

STEP 2 Identify the vertices, foci, and asymptotes. Note that $a^2 = 4$ and $b^2 = 25$, so a = 2 and b = 5. The y^2 -term is positive, so the transverse axis is vertical and the vertices are at $(0, \pm 2)$. Find the foci.

 $c^2 = a^2 + b^2 = 2^2 + 5^2 = 29$, so $c = \sqrt{29}$

The foci are at $(0, \pm \sqrt{29}) \approx (0, \pm 5.4)$.

The asymptotes are $y = \pm \frac{a}{b}x$, or $y = \pm \frac{2}{5}x$.

STEP 3 Draw the hyperbola. First draw a rectangle centered at the origin that is 2a = 4 units high and 2b = 10 units wide. The asymptotes pass through opposite corners of the rectangle. Then, draw the hyperbola passing through the vertices and approaching the asymptotes.

(Animated Algebra) at classzone.com

To plot points on the

SOLVE FOR *Y*

hyperbola, solve its equation for *y* to obtain

$$y = \pm 2\sqrt{1 + \frac{x^2}{25}}$$
. Then

make a table of values.

EXAMPLE 2 Write an equation of a hyperbola

Write an equation of the hyperbola with foci at (-4, 0) and (4, 0) and vertices at (-3, 0) and (3, 0).

Solution

The foci and vertices lie on the *x*-axis equidistant from the origin, so the transverse axis is horizontal and the center is the origin. The foci are each 4 units from the center, so c = 4. The vertices are each 3 units from the center, so a = 3.

Because
$$c^2 = a^2 + b^2$$
, you have $b^2 = c^2 - a^2$. Find b^2 .

$$b^2 = c^2 - a^2 = 4^2 - 3^2 = 7$$

Because the transverse axis is horizontal, the standard form of the equation is as follows:

$$\frac{x^2}{3^2} - \frac{y^2}{7} = 1$$
 Substitute 3 for *a* and 7 for *b*².
$$\frac{x^2}{9} - \frac{y^2}{7} = 1$$
 Simplify.

