9.5 a.5, 2A.5.B, 2A.5.C
 Graph and Write Equations of Hyperbolas

Before You graphed and wrote equations of parabolas, circles, and ellipses.

| Before You graphed and wrote equations of parabolas, circles, and ellipses. | |
| :---: | :---: | :---: |
| Now | You will graph and write equations of hyperbolas. |
| Why? | So you can model curved mirrors, as in Example 3. |

Key Vocabulary

- hyperbola
- foci
- vertices
- transverse axis
- center

Recall that an ellipse is the set of all points P in a plane such that the sum of the distances between P and two fixed points (the foci) is a constant.

A hyperbola is the set of all points P such that the difference of the distances between P and two fixed points, again called the foci, is a constant.

The line through the foci intersects the hyperbola at the two vertices. The transverse axis joins the vertices. Its midpoint is the
 hyperbola's center. A hyperbola has two branches, and has two asymptotes that contain the diagonals of a rectangle centered at the hyperbola's center, as shown.

IDENTIFY AXES

If the x^{2}-term in the equation of a hyperbola is positive, the transverse axis lies on the x-axis. If the y^{2}-term is positive, the transverse axis lies on the y-axis.

Hyperbola with horizontal transverse axis

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Hyperbola with vertical transverse axis

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

KEY CONCEPT

For Your Notebook

Standard Equation of a Hyperbola with Center at the Origin

Equation	Transverse Axis	Asymptotes	Vertices
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	Horizontal	$y= \pm \frac{b}{a} x$	$(\pm a, 0)$
$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$	Vertical	$y= \pm \frac{a}{b} x$	$(0, \pm a)$

The foci lie on the transverse axis, c units from the center, where $c^{2}=a^{2}+b^{2}$.

