EXAMPLE 1 Graph an equation of an ellipse

Graph the equation $4 x^{2}+25 y^{2}=100$. Identify the vertices, co-vertices, and foci of the ellipse.

Solution

STEP 1 Rewrite the equation in standard form.

$$
\begin{aligned}
4 x^{2}+25 y^{2} & =100 & & \text { Write original equation. } \\
\frac{4 x^{2}}{100}+\frac{25 y^{2}}{100} & =\frac{100}{100} & & \text { Divide each side by } 100 \\
\frac{x^{2}}{25}+\frac{y^{2}}{4} & =1 & & \text { Simplify. }
\end{aligned}
$$

STEP 2 Identify the vertices, co-vertices, and foci. Note that $a^{2}=25$ and $b^{2}=4$, so $a=5$ and $b=2$. The denominator of the x^{2}-term is greater than that of the y^{2}-term, so the major axis is horizontal.

The vertices of the ellipse are at $(\pm a, 0)=(\pm 5,0)$. The co-vertices are at

You can graph the ellipse using a graphing calculator by solving for y to obtain
$y= \pm 2 \sqrt{1-\frac{x^{2}}{25}}$
and then entering this equation as two separate functions.
$(0, \pm b)=(0, \pm 2)$. Find the foci.

$$
c^{2}=a^{2}-b^{2}=5^{2}-2^{2}=21, \text { so } c=\sqrt{21}
$$

The foci are at $(\pm \sqrt{21}, 0)$, or about $(\pm 4.6,0)$.
STEP 3 Draw the ellipse that passes through each vertex and co-vertex.
AnimatedAlgebra at classzone.com

- Guided Practice for Example 1

Graph the equation. Identify the vertices, co-vertices, and foci of the ellipse.

1. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
2. $\frac{x^{2}}{36}+\frac{y^{2}}{49}=1$
3. $25 x^{2}+9 y^{2}=225$

EXAMPLE 2 Write an equation given a vertex and a co-vertex

Write an equation of the ellipse that has a vertex at $(0,4)$, a co-vertex at $(-3,0)$, and center at $(0,0)$.

Solution

Sketch the ellipse as a check for your final equation. By symmetry, the ellipse must also have a vertex at $(0,-4)$ and a co-vertex at $(3,0)$.

Because the vertex is on the y-axis and the co-vertex is on the x-axis, the major axis is vertical with $a=4$, and the minor axis is horizontal with $b=3$.

- An equation is $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{4^{2}}=1$, or $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.

