Before
Now
Why?

## 9.4 <br> a.5, 2A.5.B, 2A.5.C <br> Equations of Ellipses <br> Graph and Write

You graphed and wrote equations of parabolas and circles. You will graph and write equations of ellipses.
So you can model an elliptical region, as in Example 3.

Key Vocabulary

- ellipse
- foci
- vertices
- major axis
- center
- co-vertices
- minor axis

An ellipse is the set of all points $P$ in a plane such that the sum of the distances between $P$ and two fixed points, called the foci, is a constant.

The line through the foci intersects the ellipse at the two vertices. The major axis joins the
 vertices. Its midpoint is the ellipse's center. The line perpendicular to the major axis at the center intersects the ellipse at the two co-vertices, which are joined by the minor axis. In this chapter, ellipses have a horizontal or a vertical major axis.

## IDENTIFY AXES

Observe that the major axis of an ellipse contains the foci and is always longer than the minor axis.


Ellipse with horizontal major axis

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$



Ellipse with vertical major axis

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

## KEY CONCEPT

## For Your Notebook

## Standard Equation of an Ellipse with Center at the Origin

Equation
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
Major Axis
Horizontal

Vertical
Vertices
$( \pm a, 0)$
( $0, \pm a)$

$$
( \pm b, 0)
$$

The major and minor axes are of lengths $2 a$ and $2 b$, respectively, where $a>b>0$. The foci of the ellipse lie on the major axis at a distance of $c$ units from the center, where $c^{2}=a^{2}-b^{2}$.

