passes through the given point and whose center is the origin.				
31. (-6, 0)	32. (0, 5)	33. (-4, 3)	34. (2, -4)	
35. (-6, 8)	36. (-9, 2)	37. (4, -10)	38. (-8, -5)	
(-8, 14)	40. (5, -12)	41. (-11, -11)	42. (9, 40)	

WRITING EQUATIONS Write the standard form of the equation of the circle that

43. 43. TAKS REASONING What is the equation in standard form of the circle that passes through the point (4, -6) and whose center is the origin?

(A) $x^2 + y^2 = 5$ (B) $x^2 + y^2 = 10$ (C) $x^2 + y^2 = 52$ (D) $x^2 + y^2 = 2\sqrt{13}$

GRAPHING In Exercises 44–52, equations of both circles and parabolas are given. Graph the equation.

44. $y^2 + x^2 = 49$	45. $4x^2 + y = 0$	46. $7x^2 + 7y^2 = 63$
47. $y^2 - 121 = -x^2$	48. $x^2 + 16y = 0$	49. $3x = -y^2$
50. $12x^2 + 12y^2 = 192$	51. $2x^2 + 2y^2 = 16$	52. $6x + 6y^2 = 0$

PLE 3 TANGENT LINES Write an equation of the line tangent to the given circle at the given point.

53. $x^2 + y^2 = 17$; (1, 4)	54. $x^2 + y^2 = 13$; (2, -3)	55. $x^2 + y^2 = 34$; (-5, 3)
56. $x^2 + y^2 = 40; (-6, -2)$	57. $x^2 + y^2 = 106$; (-5, 9)	58. $x^2 + y^2 = 250$; (15, 5)

- **59. \downarrow TAKS REASONING** Write equations in standard form for three circles centered at the origin so that each circle passes between (-3, 5) and (-6, 2).
- **60. REASONING** Use the diagram to show that an angle inscribed in a semicircle is a right angle. (*Hint:* Show that the segments meeting at (*x*, *y*) have slopes that are negative reciprocals.)
- **61. CHALLENGE** Suppose two congruent circles intersect so that each passes through the other's center, as shown. Write an equation that gives the length ℓ of the chord formed by joining the intersection points in terms of the radius *r* of each circle.

PROBLEM SOLVING

EXAMPLE 4 on p. 628 for Exs. 62–64 **62. CELL PHONES** A cellular phone tower services a 15 mile radius. On a hiking trip, you are 9 miles east and 11 miles north of the cell tower. Are you in the region served by the tower?

TEXAS @HomeTutor for problem solving help at classzone.com

63. BATS During the warmer months, more than 1 million Mexican free-tailed bats live under the Congress Avenue Bridge in Austin, Texas. The bats have an estimated feeding range of 50 miles. Is a location 40 miles north and 25 miles west of the bridge located within this range?

TEXAS *@HomeTutor* for problem solving help at classzone.com

EXAMPLE 3 on p. 627 for Exs. 53–58