EXAMPLE 2 Write an equation of a circle

The point $(2,-5)$ lies on a circle whose center is the origin. Write the standard form of the equation of the circle.

Solution

Because the point $(2,-5)$ lies on the circle, the circle's radius r must be the distance between the center $(0,0)$ and $(2,-5)$. Use the distance formula.

$$
r=\sqrt{(2-0)^{2}+(-5-0)^{2}}=\sqrt{4+25}=\sqrt{29} \quad \text { The radius is } \sqrt{29}
$$

Use the standard form with $r=\sqrt{29}$ to write an equation of the circle.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} & & \text { Standard form } \\
x^{2}+y^{2} & =(\sqrt{\mathbf{2 9}})^{2} & & \text { Substitute } \sqrt{\mathbf{2 9}} \text { for } \boldsymbol{r} . \\
x^{2}+y^{2} & =29 & & \text { Simplify. }
\end{aligned}
$$

ELIMINATE CHOICES
In Example 3, you can eliminate choice D because a quick sketch of the circle shows that the slope of the tangent line at $(-1,3)$ must be positive.

Example 3 TAKS PRACTICE: Multiple Choice

What is an equation of the line tangent to the circle $x^{2}+y^{2}=10$ at $(-1,3)$?
(A) $y=3 x+4$
(B) $y=3 x+\frac{8}{3}$
(C) $y=\frac{1}{3} x+\frac{10}{3}$
(D) $y=-\frac{1}{3} x+\frac{8}{3}$

Solution

From geometry, a line tangent to a circle is perpendicular to the radius at the point of tangency. The radius with endpoint $(-1,3)$ has slope $m=\frac{3-0}{-1-0}=-3$, so the slope of the tangent line at $(-1,3)$ is the negative reciprocal of -3 , or $\frac{1}{3}$.
An equation of the tangent line is as follows:

$$
\begin{aligned}
y-3 & =\frac{1}{3}(x-(-1)) & & \text { Point-slope form } \\
y-3 & =\frac{1}{3} x+\frac{1}{3} & & \text { Distributive property } \\
y & =\frac{1}{3} x+\frac{10}{3} & & \text { Solve for } y .
\end{aligned}
$$

- The correct answer is C. (A) (B) (C)

$\sqrt{\text { GUIDED PrActice }}$ for Examples 1, 2, and 3

Graph the equation. Identify the radius of the circle.

1. $x^{2}+y^{2}=9$
2. $y^{2}=-x^{2}+49$
3. $x^{2}-18=-y^{2}$
4. Write the standard form of the equation of the circle that passes through $(5,-1)$ and whose center is the origin.
5. Write an equation of the line tangent to the circle $x^{2}+y^{2}=37$ at $(6,1)$.
