Graph the equation. Identify the focus, directrix, and axis of symmetry of the parabola.

1. $y^{2}=-6 x$
2. $x^{2}=2 y$
3. $y=-\frac{1}{4} x^{2}$
4. $x=\frac{1}{3} y^{2}$

Write the standard form of the equation of the parabola with vertex at $(0,0)$ and the given directrix or focus.
5. Directrix: $y=2$
6. Directrix: $x=4$
7. Focus: $(-2,0)$
8. Focus: $(0,3)$

PARABOLIC REFLECTORS Parabolic reflectors have cross sections that are parabolas. Incoming sound, light, or other energy that arrives at a parabolic reflector parallel to the axis of symmetry is directed to the focus (Diagram 1). Similarly, energy that is emitted from the focus of a parabolic reflector and then strikes the reflector is directed parallel to the axis of symmetry (Diagram 2).

Diagram 1

Diagram 2

Example 3 TAKS REASONING: Multi-Step Problem

SOLAR ENERGY The EuroDish, developed to provide electricity in remote areas, uses a parabolic reflector to concentrate sunlight onto a high-efficiency engine located at the reflector's focus. The sunlight heats helium to $650^{\circ} \mathrm{C}$ to power the engine.

- Write an equation for the EuroDish's cross section with its vertex at $(0,0)$.
- How deep is the dish?

Solution

STEP 1 Write an equation for the cross section. The engine is at the focus, which is $|p|=4.5$ meters from the vertex. Because the focus is above the vertex, p is positive, so $p=4.5$. An equation for the cross section of the EuroDish with its vertex at the origin is as follows:

$$
\begin{array}{ll}
x^{2}=4 p y & \text { Standard form, vertical axis of symmetry } \\
x^{2}=4(4.5) y & \text { Substitute } 4.5 \text { for } p \\
x^{2}=18 y & \text { Simplify. }
\end{array}
$$

STEP 2 Find the depth of the EuroDish. The depth is the y-value at the dish's outside edge. The dish extends $\frac{8.5}{2}=4.25$ meters to either side of the vertex $(0,0)$, so substitute 4.25 for x in the equation from Step 1 .

$$
\begin{aligned}
x^{2} & =18 y & & \text { Equation for the cross section } \\
(4.25)^{2} & =18 y & & \text { Substitute } 4.25 \text { for } x . \\
1.0 & \approx y & & \text { Solve for } y .
\end{aligned}
$$

- The dish is about 1 meter deep.

