KEY CONCEPT

Standard Equation of a Parabola with Vertex at the Origin

The standard form of the equation of a parabola with vertex at $(0,0)$ is as follows:

Equation Focus Directrix Axis of Symmetry
$x^{2}=4 p y \quad(0, p) \quad y=-p$

Vertical ($x=0$)
$y^{2}=4 p x \quad(p, 0) \quad x=-p \quad$ Horizontal $(y=0)$

EXAMPLE 1 Graph an equation of a parabola

Graph $x=-\frac{1}{8} y^{2}$. Identify the focus, directrix, and axis of symmetry.

Solution

STEP 1 Rewrite the equation in standard form.

SOLVE FOR Y

To fill in the table, note that because $-8 x=y^{2}$, $y= \pm \sqrt{-8 x}$. The value of y will be a real number only when $x \leq 0$.

$$
\begin{aligned}
x & =-\frac{1}{8} y^{2} & & \text { Write original equation. } \\
-8 x & =y^{2} & & \text { Multiply each side by }-8 .
\end{aligned}
$$

STEP 2 Identify the focus, directrix, and axis of symmetry. The equation has the form $y^{2}=4 p x$ where $p=-2$. The focus is $(p, 0)$, or $(-2,0)$. The directrix is $x=-p$, or $x=2$. Because y is squared, the axis of symmetry is the x-axis. Draw the parabola by making a table of values and plotting points. Because $p<0$, the parabola opens to the left. So, use only negative x-values.

x	-1	-2	-3	-4	-5
y	± 2.83	± 4	± 4.90	± 5.66	± 6.32

AinimatedAlgebra at classzone.com

EXAMPLE 2 Write an equation of a parabola

Write an equation of the parabola shown.

Solution

The graph shows that the vertex is $(0,0)$ and the directrix is $y=-p=-\frac{3}{2}$. Substitute $\frac{3}{2}$ for p in the
 standard form of the equation of a parabola.

$$
\begin{array}{ll}
x^{2}=4 p y & \text { Standard form, vertical axis of symmetry } \\
x^{2}=4\left(\frac{\mathbf{3}}{\mathbf{2}}\right) y & \text { Substitute } \frac{\mathbf{3}}{\mathbf{2}} \text { for } p . \\
x^{2}=6 y & \text { Simplify. }
\end{array}
$$

