1. What is the distance between $(3,-3)$ and $(-1,5)$?
2. The vertices of a triangle are $R(-1,3), S(5,2)$, and $T(3,6)$. Classify $\triangle R S T$ as scalene, isosceles, or equilateral.

KEY CONCEPT

The Midpoint Formula

A line segment's midpoint is equidistant from the segment's endpoints. The midpoint formula, shown below, gives the midpoint of the line segment joining $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

In words, each coordinate of M is the mean of the corresponding coordinates of A and B.

EXAMPLE 3 Find the midpoint of a line segment

Find the midpoint of the line segment joining $(-5,1)$ and $(-1,6)$.

Solution

Let $\left(x_{1}, y_{1}\right)=(-5,1)$ and $\left(x_{2}, y_{2}\right)=(-1,6)$.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-5+(-1)}{2}, \frac{1+6}{2}\right)=\left(-3, \frac{7}{2}\right)
$$

AhimatedAlgebra at classzone.com

EXAMPLE 4 Find a perpendicular bisector

REVIEW EQUATIONS

 For help with writing equations of perpendicular lines, see p. 98.Write an equation for the perpendicular bisector of the line segment joining $A(-3,4)$ and $B(5,6)$.

Solution

STEP 1 Find the midpoint of the line segment.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-3+5}{2}, \frac{4+6}{2}\right)=(1,5)
$$

STEP 2 Calculate the slope of $\overline{A B}$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{5-(-3)}=\frac{2}{8}=\frac{1}{4}
$$

STEP 3 Find the slope of the perpendicular bisector: $-\frac{1}{m}=-\frac{1}{1 / 4}=-4$.
STEP 4 Use point-slope form: $y-5=-4(x-1)$, or $y=-4 x+9$.

- An equation for the perpendicular bisector of $\overline{A B}$ is $y=-4 x+9$.

