8
 CHAPTER REVIEW

8.2 Graph Simple Rational Functions

EXAMPLE

Graph $y=\frac{2 x+5}{x-1}$. State the domain and range.
STEP 1 Draw the asymptotes. Solve $x-1=0$ for x to find the vertical asymptote $x=1$. The horizontal asymptote is the line $y=\frac{2}{1}=2$.

STEP 2 Plot points to the left and to the right of the vertical asymptote.
STEP 3 Draw the two branches of the hyperbola so that they pass through the plotted points and
 approach the asymptotes.

- The domain is all real numbers except 1 . The range is all real numbers except 2.

EXERCISES

EXAMPLES

2 and 3

on pp. 559-560
for Exs. 10-12

Graph the function. State the domain and range.
10. $y=\frac{4}{x-3}$
11. $y=\frac{1}{x+5}+2$

8.3 Graph General Rational Functions

EXAMPLE

Graph $y=\frac{2 x^{2}}{x+2}$.

- The numerator has 0 as its only zero, so the graph has an x-intercept at $(0,0)$.
- The denominator has -2 as its only zero, so the graph has a vertical asymptote at $x=-2$.
- The degree of the numerator (2) is greater than the degree of the denominator (1). So, there is no horizontal asymptote. The graph has the same
 end behavior as the graph of $y=\frac{2}{1} x^{2-1}=2 x$.

EXERCISES

EXAMPLES

1,2 , and 3

on pp. 565-566
for Exs. 13-18

Graph the function.
13. $y=\frac{5}{x^{2}+1}$
14. $y=\frac{4 x^{2}}{x-1}$
15. $h(x)=\frac{6 x^{2}}{x-2}$
16. $y=\frac{-8}{x^{2}+3}$
17. $y=\frac{x^{2}+6}{x^{2}-3 x-40}$
18. $g(x)=\frac{x^{2}-1}{x+4}$

