1.1 EXERCISES

HOMEWORK

= WORKED-OUT SOLUTIONS on p. WS1 for Exs. 21, 31, and 59

= TAKS PRACTICE AND REASONING Exs. 9, 10, 23, 24, 60, 61, 63, and 64

SKILL PRACTICE

- **1. VOCABULARY** Copy and complete: The $\underline{?}$ of any nonzero number b is $\frac{1}{L}$.
- 2. WRITING Express the associative property of addition in words.

GRAPHING NUMBERS Graph the numbers on a number line.

EXAMPLE 1

on p. 2 for Exs. 3-8 3. $-\frac{3}{4}$, 5, $\frac{9}{2}$, -2, -1

4.
$$-3, \frac{5}{2}, 2, -\frac{9}{4}, 4$$

5.
$$1, \sqrt{3}, -\frac{2}{3}, -\frac{5}{4}, 2$$

6. 6,
$$-\sqrt{5}$$
, 2.7, -2 , $\frac{7}{3}$

7.
$$-0.4, \frac{3}{2}, 0, \sqrt{10}, -1$$

6. 6,
$$-\sqrt{5}$$
, 2.7, -2 , $\frac{7}{3}$ **7.** -0.4 , $\frac{3}{2}$, 0, $\sqrt{10}$, -1 **8.** -1.7 , 5, $\frac{9}{2}$, $-\sqrt{8}$, -3

EXAMPLE 2

on p. 3 for Exs. 9-10 **ORDERING NUMBERS** In Exercises 9 and 10, use the table of elevations below.

	State	Alabama	California	Kentucky	Louisiana	Tennessee
	Highest elevation	2407 ft	14,494 ft	4145 ft	535 ft	6643 ft
	Lowest elevation	0 ft	−282 ft	257 ft	−8 ft	178 ft

- 9. TAKS REASONING Which list shows the highest elevations in order from least to greatest?
 - **A** 2407; 14,494; 4145; 535; 6643
- **B**) 535; 2407; 4145; 6643; 14,494
- **(C)** 14,494; 2407; 4145; 535; 6643
- **(D)** 14,494; 6643; 4145; 2407; 535

Louisiana

bayou

- 10. TAKS REAGEOING Which list shows the lowest elevations in order from greatest to least?
 - **A** 0, -8, 178, 257, -282
- (\mathbf{B}) -282, -8, 0, 178, 257
- (\mathbf{C}) -282, 257, 178, -8, 0
- (\mathbf{D}) 257, 178, 0, -8, -282

EXAMPLE 3

on p. 4 for Exs. 11–16 **IDENTIFYING PROPERTIES** Identify the property that the statement illustrates.

11.
$$(4+9) + 3 = 4 + (9+3)$$

12.
$$15 \cdot 1 = 15$$

13.
$$6 \cdot 4 = 4 \cdot 6$$

14.
$$5 + (-5) = 0$$

15.
$$7(2+8) = 7(2) + 7(8)$$

16.
$$(6 \cdot 5) \cdot 7 = 6 \cdot (5 \cdot 7)$$

EXAMPLE 4

on p. 4 for Exs. 17-22

USING PROPERTIES Use properties and definitions of operations to show that the statement is true. Justify each step.

17.
$$6 \cdot (a \div 3) = 2a$$

18.
$$15 \cdot (3 \div b) = 45 \div b$$

19.
$$(c-3)+3=c$$

20.
$$(a + b) - c = a + (b - c)$$

(21.)
$$7a + (4 + 5a) = 12a + 4$$

22.
$$(12b + 15) - 3b = 15 + 9b$$

- **23. ADPENS ENIDSONMETH** Find values of a and b such that a is a whole number, b is a rational number but not an integer, and $a \div b = -8$.
- 24. **DEEMS ENDSONMENT** Write three equations using integers to illustrate the distributive property.