EXAMPLE 3 Solve a rational inequality algebraically

Solve $\frac{6}{x-2} \geq-4$ algebraically.

Solution

STEP 1 Rewrite the inequality so that one side is 0 . Then write the other side as a simplified rational expression.

AVOID ERRORS

Do not multiply each side of an inequality by an expression involving x if the expression can take on both positive and negative values.

$$
\begin{aligned}
\frac{6}{x-2} & \geq-4 & & \text { Write original inequality. } \\
\frac{6}{x-2}+4 & \geq 0 & & \text { Add 4 to each side. } \\
\frac{6+4(x-2)}{x-2} & \geq 0 & & \text { Write left side as a single fraction. } \\
\frac{4 x-2}{x-2} & \geq 0 & & \text { Simplify. }
\end{aligned}
$$

STEP 2 Identify the critical x-values, which are the x-values that make the numerator or denominator equal to 0 .
Numerator equal to 0:

Denominator equal to 0:

$$
\begin{aligned}
4 x-2 & =0 \\
x & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{r}
x-2=0 \\
x=2
\end{array}
$$

So, the critical x-values are $x=\frac{1}{2}$ and $x=2$.

The critical x-values divide the number line into three intervals. Note that $x=\frac{1}{2}$ will be included in the solution, but $x=2$ will not because it results in division by zero.

STEP 3 Test an x-value in each interval to see if it satisfies the original inequality. If it does, every x-value in the interval will satisfy the inequality. If it does not, no x-value in the interval will satisfy the inequality.

STEP 4 Graph the intervals where the tested x-values produce true statements.

STEP 5 Write inequalities to describe the solution.

- The solution is $x \leq \frac{1}{2}$ or $x>2$.

