Extension Solve Rational Inequalities

GOAL Find solutions of rational inequalities.

In Lesson 8.6, you solved rational equations. You can also solve rational inequalities using tables, graphs, or algebraic methods.

EXAMPLE 1 Solve a rational inequality using a table

Use a table to solve $\frac{x^{2}-2 x+1}{x-2}>x$.

Solution

Subtract x from each side of the inequality so that 0 is on one side.

$$
\frac{x^{2}-2 x+1}{x-2}-x>0 \quad \text { Subtract } x \text { from each side. }
$$

Enter $y=\frac{x^{2}-2 x+1}{x-2}-x$ into a graphing calculator.
Use the table feature to find values of x for which y is positive.

The value of y is undefined when $x=2$ and appears to be positive when $x>2$. Use a smaller step value for x to convince yourself of this.

- The solution is $x>2$.

EXAMPLE 2 Solve a rational inequality by graphing

From 1990 to 2001, the number d (in thousands) of doctors in the United States can be modeled by the function $d=\frac{966 t^{2}+50,300}{t^{2}+79.7}$ where t is the number of years since 1990. When were there fewer than 800,000 doctors?

Solution

The problem requires solving this inequality:

$$
\frac{966 t^{2}+50,300}{t^{2}+79.7}<800
$$

Enter $y_{1}=\frac{966 x^{2}+50,300}{x^{2}+79.7}$ and $y_{2}=800$ into a graphing calculator.

Graph the functions and use the intersect feature. The graph of y_{1} lies below the graph of y_{2} when $0 \leq x \leq 9$.

- In the years 1990-1999, there were fewer than 800,000 doctors.

