EXTRANEOUS SOLUTIONS When solving a rational equation, you may obtain solutions that are extraneous. Be sure to check for extraneous solutions by substituting back into the original equation.

EXAMPLE 5 Check for extraneous solutions

Solve:
$$\frac{6}{x-3} = \frac{8x^2}{x^2-9} - \frac{4x}{x+3}$$

Solution

Write each denominator in factored form. The LCD is (x + 3)(x - 3).

$$\frac{6}{x-3} = \frac{8x^2}{(x+3)(x-3)} - \frac{4x}{x+3}$$

(x+3)(x-3) $\cdot \frac{6}{x-3} = (x+3)(x-3) \cdot \frac{8x^2}{(x+3)(x-3)} - (x+3)(x-3) \cdot \frac{4x}{x+3}$
 $6(x+3) = 8x^2 - 4x(x-3)$
 $6x + 18 = 8x^2 - 4x^2 + 12x$
 $0 = 4x^2 + 6x - 18$
 $0 = 2x^2 + 3x - 9$
 $0 = (2x-3)(x+3)$
 $2x-3 = 0 \text{ or } x+3 = 0$
 $x = \frac{3}{2} \text{ or } x = -3$

You can use algebra or a graph to check whether either of the two solutions is extraneous.

Algebra The solution $\frac{3}{2}$ checks, but the apparent solution -3 is extraneous, because substituting it in the equation results in division by zero, which is undefined.

Graph Graph $y = \frac{6}{x-3}$ and $y = \frac{8x^2}{x^2-9} - \frac{4x}{x+3}$.

The graphs intersect when $x = \frac{3}{2}$, but not when x = -3.

The solution is $\frac{3}{2}$.

GUIDED PRACTICE for Examples 3, 4, and 5

Solve the equation by using the LCD. Check for extraneous solutions.

5.
$$\frac{7}{2} + \frac{3}{x} = 3$$

6. $\frac{2}{x} + \frac{4}{3} = 2$
7. $\frac{3}{7} + \frac{8}{x} = 1$
8. $\frac{3}{2} + \frac{4}{x-1} = \frac{x+1}{x-1}$
9. $\frac{3x}{x+1} - \frac{5}{2x} = \frac{3}{2x}$
10. $\frac{5x}{x-2} = 7 + \frac{10}{x-2}$

EXTRANEOUS SOLUTIONS For help with extraneous solutions, see p. 51.

REVIEW