SIMPLIFYING COMPLEX FRACTIONS Simplify the complex fraction.

5 and 6 on p. 585 for Exs. 31–36

EXAMPLES

38.
$$\frac{\frac{1}{x} - \frac{x}{x^{-1} + 1}}{\frac{5}{x}}$$
 39. $\frac{\frac{3 - 2x}{x^3}}{\frac{2}{x^2} - \frac{1}{x^3 + x^2}}$ **40.** $\frac{3x^{-2} + (2x - 1)^{-1}}{\frac{6}{x^{-1} + 2} + 3x^{-1}}$

PROBLEM SOLVING

on p. 583
for Ex. 41

41. JET STREAM The total time *T* (in hours) needed to fly from New York to Los Angeles and back (ignoring layovers) can be modeled by the equation in the diagram, where *d* is the distance each way (in miles), *a* is the average airplane speed (in miles per hour), and *j* is the average speed of the jet stream (in miles per hour).

$$T = \frac{d}{a-j} + \frac{d}{a+j}$$

Rewrite the equation so that the right side is simplified. Then find the total time if d = 2468 miles, a = 510 mi/h, and j = 115 mi/h.

Animated Algebra at classzone.com

EXAMPLES 5 and 6 on p. 585 for Exs. 42–43 **42. ELECTRONICS** If two resistors in a parallel circuit have resistances R_1 and R_2 (both in ohms), then the total resistance R_t (in ohms) is given by the equation shown. Simplify the complex fraction. Then find the total resistance if $R_1 = 2000$ ohms and $R_2 = 5600$ ohms.

