EXAMPLES
5 and 6
on p. 585
for Exs. 31-36

SIMPLIFYING COMPLEX FRACTIONS Simplify the complex fraction.
31. $\frac{\frac{x}{3}-6}{10+\frac{4}{x}}$
32. $\frac{15-\frac{2}{x}}{\frac{x}{5}+4}$
33. $\frac{\frac{16}{x-2}}{\frac{4}{x+1}+\frac{6}{x}}$
34. $\frac{\frac{1}{2 x-5}-\frac{7}{8 x-20}}{\frac{x}{2 x-5}}$
35. $\frac{\frac{3}{x-2}-\frac{6}{x^{2}-4}}{\frac{3}{x+2}+\frac{1}{x-2}}$
36. $\frac{\frac{1}{3 x^{2}-3}}{\frac{5}{x+1}-\frac{x+4}{x^{2}-3 x-4}}$
37. TAKS REASONING Write two different complex fractions that each simplify to $\frac{x-3}{x+4}$.

CHALLENGE Simplify the complex fraction.
38. $\frac{\frac{1}{x}-\frac{x}{x^{-1}+1}}{\frac{5}{x}}$
39. $\frac{\frac{3-2 x}{x^{3}}}{\frac{2}{x^{2}}-\frac{1}{x^{3}+x^{2}}}$
40. $\frac{3 x^{-2}+(2 x-1)^{-1}}{\frac{6}{x^{-1}+2}+3 x^{-1}}$

Problem Solving

EXAMPLE 3

 on p. 583for Ex. 41

EXAMPLES

5 and 6
on p. 585
for Exs. 42-43
41. JET STREAM The total time T (in hours) needed to fly from New York to Los Angeles and back (ignoring layovers) can be modeled by the equation in the diagram, where d is the distance each way (in miles), a is the average airplane speed (in miles per hour), and j is the average speed of the jet stream (in miles per hour).

$$
T=\frac{d}{a-j}+\frac{d}{a+j}
$$

Rewrite the equation so that the right side is simplified. Then find the total time if $d=2468$ miles, $a=510 \mathrm{mi} / \mathrm{h}$, and $j=115 \mathrm{mi} / \mathrm{h}$.

AinimatedAlgebra at classzone.com

42. ELECTRONICS If two resistors in a parallel circuit have resistances R_{1} and R_{2} (both in ohms), then the total resistance R_{t} (in ohms) is given by the equation shown. Simplify the complex fraction. Then find the total resistance if $R_{1}=2000$ ohms and $R_{2}=5600$ ohms.

TEXAS @HomeTutor for problem solving help at classzone.com

$$
R_{t}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}
$$

