EXAMPLE 5 Simplify a complex fraction (Method 1)

PHYSICS Let f be the focal length of a thin camera lens, p be the distance between an object being photographed and the lens, and q be the distance between the lens and the film. For the photograph to be in focus, the variables should satisfy the lens equation below. Simplify the complex fraction.

$$
\text { Lens equation: } f=\frac{1}{\frac{1}{p}+\frac{1}{q}}
$$

Solution

$$
\begin{aligned}
f=\frac{1}{\frac{1}{p}+\frac{1}{q}}=\frac{1}{\frac{q}{p q}+\frac{p}{p q}} & =\frac{1}{\frac{q+p}{p q}} & \text { Write denominator as a single fraction. } \\
& =\frac{p q}{q+p} & \text { Divide numerator by denominator. }
\end{aligned}
$$

EXAMPLE 6 Simplify a complex fraction (Method 2)

Simplify: $\frac{\frac{5}{x+4}}{\frac{1}{x+4}+\frac{2}{x}}$

Solution

The LCD of all the fractions in the numerator and denominator is $x(x+4)$.

$$
\begin{aligned}
\frac{\frac{5}{x+4}}{\frac{1}{x+4}+\frac{2}{x}} & =\frac{\frac{5}{x+4}}{\frac{1}{x+4}+\frac{2}{x}} \cdot \frac{x(x+4)}{x(x+4)} & & \begin{array}{l}
\text { Multiply numerator and } \\
\text { denominator by the LCD. }
\end{array} \\
& =\frac{5 x}{x+2(x+4)} & & \text { Simplify. } \\
& =\frac{5 x}{3 x+8} & & \text { Simplify. }
\end{aligned}
$$

GuIDed Practice for Examples 5 and 6

Simplify the complex fraction.
11. $\frac{\frac{x}{6}-\frac{x}{3}}{\frac{x}{5}-\frac{7}{10}}$
12. $\frac{\frac{2}{x}-4}{\frac{2}{x}+3}$
13. $\frac{\frac{3}{x+5}}{\frac{2}{x-3}+\frac{1}{x+5}}$

