EXAMPLE 4 Subtract with unlike denominators

Subtract: $\frac{x+2}{2 x-2}-\frac{-2 x-1}{x^{2}-4 x+3}$

Solution

$$
\begin{array}{rlrl}
\frac{x}{2 x} & +2 \\
& =\frac{x+2}{x^{2}-4 x+3} & & \\
& =\frac{x+2}{2(x-1)}-\frac{-2 x-1}{(x-1)(x-3)} \cdot \frac{x-3}{x-3}-\frac{-2 x-1}{(x-1)(x-3)} \cdot \frac{2}{2} & & \text { LCD is } 2(x-1)(x-3) . \\
& =\frac{x^{2}-x-6}{2(x-1)(x-3)}-\frac{-4 x-2}{2(x-1)(x-3)} & & \text { Multiply. } \\
& =\frac{x^{2}-x-6-(-4 x-2)}{2(x-1)(x-3)} & & \text { Subtor denominators. } \\
& =\frac{x^{2}+3 x-4}{2(x-1)(x-3)} & & \text { Simplify numerator. } \\
& =\frac{(x-1)(x+4)}{2(x-1)(x-3)} & & \text { Factor numerator. } \\
& =\frac{x+4}{2(x-3)} & & \text { Simide out common factory. }
\end{array}
$$

AVOID ERRORS

After you simplify the numerator, check to see if the numerator has a factor in common with the denominator. If so, the expression can be simplified further.

Guided Practice for Examples 2, 3, and 4

Find the least common multiple of the polynomials.
5. $5 x^{3}$ and $10 x^{2}-15 x$
6. $8 x-16$ and $12 x^{2}+12 x-72$

Perform the indicated operation and simplify.
7. $\frac{3}{4 x}-\frac{1}{7}$
8. $\frac{1}{3 x^{2}}+\frac{x}{9 x^{2}-12 x}$
9. $\frac{x}{x^{2}-x-12}+\frac{5}{12 x-48}$
10. $\frac{x+1}{x^{2}+4 x+4}-\frac{6}{x^{2}-4}$

KEY CONCEPT

Simplifying Complex Fractions

A complex fraction is a fraction that contains a fraction in its numerator or denominator. A complex fraction can be simplified using either of the methods below.

Method 1: If necessary, simplify the numerator and denominator by writing each as a single fraction. Then divide the numerator by the denominator.

Method 2: Multiply the numerator and the denominator by the least common denominator (LCD) of every fraction in the numerator and denominator. Then simplify.

