51. MULTI-STEP PROBLEM A manufacturer is comparing two designs for a water tower: a sphere and a cylinder. Both designs have the same volume and the same radius.

a. Show that the height h of the cylindrical tank is $\frac{4}{3} r$.
b. Write an expression for the surface area of each tank in terms of r.
c. Find the ratio of the surface area of the spherical tank to the surface area of the cylindrical tank. Explain what the ratio tells you about which water tower would take less material to build.
52. TAKS REASONING The surface area S and the volume V of a cylindrical can are given by $S=2 \pi r^{2}+2 \pi r h$ and $V=\pi r^{2} h$ where r is the radius and h is the height.
a. Model Write and simplify an expression for the efficiency ratio $\frac{S}{V}$.
b. Calculate Find the efficiency ratio for each can listed in the table.

	Soup can	Coffee can	Paint can
Height, \boldsymbol{h}	10.2 cm	15.9 cm	19.4 cm
Radius, \boldsymbol{r}	3.4 cm	7.8 cm	8.4 cm

c. Compare Rank the three cans in part (b) according to efficiency. Explain your ranking.
53. ChALLENGE A fuel storage container is shaped like a cylinder with a hemisphere on each end, as shown. The length of the cylinder is ℓ and the radius of each hemisphere is r. Show that the ratio of the surface area to the volume of the container is $\frac{6(2 r+\ell)}{r(4 r+3 \ell)}$.

REVIEW

Lesson 1.2;
TAKS Workbook

REVIEW
TAKS Preparation
p. 146;

TAKS Workbook
54. TAKS PRACTICE Which expression is equivalent to $3 y[4-(y+2)]+5 y(y-3) ?$ TAKS Obj. 2
(A) $2 y^{2}-9 y$
(B) $2 y^{2}-3 y$
(C) $2 y-9$
(D) $2 y^{2}-6 y+15$
55. TAKS PRACTICE Each year about 6800 freshmen attend the University of Texas. This is about 16% of the total enrollment. About how many students attend the University of Texas? TAKS Obj. 9
(F) 17,700
(G) 41,300
(H) 42,500
(J) 46,000

