EFFICIENCY Manufacturers often package their products in a way that uses the least amount of packaging material. One measure of the efficiency of a package is the ratio of its surface area to its volume. The smaller the ratio, the more efficient the packaging.

ExAMPLE 2 TAKS REASONING: Multi-Step Problem
PACKAGING A company makes a tin to hold flavored popcorn. The tin is a rectangular prism with a square base. The company is designing a new tin with the same base and twice the height of the old tin.

- Find the surface area and volume of each tin.
- Calculate the ratio of surface area to volume for each tin.
- What do the ratios tell you about the efficiencies of the two tins?

Solution

Old tin

STEP $1 \quad S=2 s^{2}+4 s h$

$$
\begin{aligned}
S & =2 s^{2}+4 s(2 h) \\
& =2 s^{2}+8 s h
\end{aligned}
$$

$$
V=s^{2} h
$$

$$
V=s^{2}(2 h)
$$

$$
=2 s^{2} h
$$

STEP $2 \frac{S}{V}=\frac{2 s^{2}+4 s h}{s^{2} h}$

$$
=\frac{s(2 s+4 h)}{s(s h)}
$$

$$
=\frac{2 s+4 h}{s h}
$$

$$
=\frac{s+4 h}{s h}
$$

Simplified form

STEP $3 \frac{2 s+4 h}{s h}>\frac{s+4 h}{s h}$ because the left side of the inequality has a greater numerator than the right side and both have the same (positive) denominator. The ratio of surface area to volume is greater for the old tin than for the new tin. So, the old tin is less efficient than the new tin.

GUIDED PRACTICE for Examples 1 and 2

Simplify the expression, if possible.

1. $\frac{2(x+1)}{(x+1)(x+3)}$
2. $\frac{40 x+20}{10 x+30}$
3. $\frac{4}{x(x+2)}$
4. $\frac{x+4}{x^{2}-16}$
5. $\frac{x^{2}-2 x-3}{x^{2}-x-6}$
6. $\frac{2 x^{2}+10 x}{3 x^{2}+16 x+5}$
7. WHAT IF? In Example 2, suppose the new popcorn tin is the same height as the old tin but has a base with sides twice as long. What is the ratio of surface area to volume for this tin?
