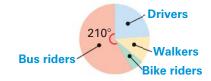

- **36. CHALLENGE** You need to build a cylindrical water tank using 100 cubic feet of concrete. The sides and the base of the tank must be 1 foot thick.
 - **a.** Write an equation that gives the tank's inner height *h* in terms of its inner radius r.
 - **b.** Write an equation that gives the volume V of water that the tank can hold as a function of r.
 - **c.** Graph the equation from part (b). What values of *r* and *h* maximize the tank's capacity?

MIXED REVIEW FOR TAKS

PRACTICE at classzone.com

REVIEW


Lesson 4.7; TAKS Workbook

REVIEW

Skills Review Handbook p. 1006; TAKS Workbook 37. TAKS PRACTICE Doris plants a 75 square foot rectangular garden. She uses 36 feet of fencing to enclose the garden. What are the approximate dimensions of the garden? TAKS Obj. 5

(A) 5.6 ft by 13.4 ft **(B)** 5.7 ft by 12.3 ft **(C)** 6.0 ft by 12.0 ft **(D)** 6.6 ft by 11.4 ft

38. TAKS PRACTICE The circle graph represents 840 students. The red section of the circle graph represents the number of students who ride a bus to school everyday. How many students ride a bus to school everyday? TAKS Obj. 8

QUIZ for Lessons 8.1–8.3

The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when x = -4. (p. 551)

1
$$v = 8$$
 $v = 3$

2.
$$x = 2, y = -9$$

3.
$$x = -5, y = \frac{8}{3}$$

1.
$$x = 8, y = 3$$
 2. $x = 2, y = -9$ **3.** $x = -5, y = \frac{8}{3}$ **4.** $x = -\frac{1}{4}, y = -32$

Graph the function.

5.
$$y = \frac{3}{2x}$$
 (p. 558)

6.
$$y = \frac{4}{x-2} + 1$$
 (p. 558)

6.
$$y = \frac{4}{x-2} + 1$$
 (p. 558) **7.** $f(x) = \frac{-2x}{3x-6}$ (p. 558)

8.
$$y = \frac{-8}{x^2 - 1}$$
 (p. 565)

9.
$$y = \frac{x^2 - 6}{x^2 + 2}$$
 (p. 565)

9.
$$y = \frac{x^2 - 6}{x^2 + 2}$$
 (p. 565) **10.** $g(x) = \frac{x^3 - 8}{2x^2}$ (p. 565)

11. **SOFTBALL** A pitcher throws 16 strikes in her first 38 pitches. The table shows how the pitcher's strike percentage changes if she throws x consecutive strikes after the first 38 pitches. Write a rational function for the strike percentage in terms of *x*. Graph the function. How many consecutive strikes must the pitcher throw to reach a strike percentage of 0.60? (p. 558)

x	Total strikes	Total pitches	Strike percentage
0	16	38	0.42
5	21	43	0.49
10	26	48	0.54
Х	x + 16	x + 38	?