GUIDED PRACTICE for Examples 1, 2, and 3

Graph the function.

1.
$$y = \frac{4}{x^2 + 2}$$
 2. $y = \frac{3x^2}{x^2 - 1}$ **3.** $f(x) = \frac{x^2 - 5}{x^2 + 1}$ **4.** $y = \frac{x^2 - 2x - 3}{x - 4}$

🗞 TAKS REASONING: Multi-Step Problem

MANUFACTURING A food manufacturer wants to find the most efficient packaging for a can of soup with a volume of 342 cubic centimeters. Find the dimensions of the can that has this volume and uses the least amount of material possible.

Solution

EXAMPLE 4

STEP 1 Write an equation that gives the height *h* of the soup can in terms of its radius r. Use the formula for the volume of a cylinder and the fact that the soup can's volume is 342 cubic centimeters.

$V = \pi r^2 h$	Formula for volume of cylinder
342 = $\pi r^2 h$	Substitute 342 for V.
$\frac{342}{\pi r^2} = h$	Solve for <i>h</i> .

STEP 2 Write a function that gives the surface area *S* of the soup can in terms of only its radius r.

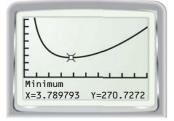
$$S = 2\pi r^{2} + 2\pi r h$$
 Formula for surface area of cylinder
$$= 2\pi r^{2} + 2\pi r \left(\frac{342}{\pi r^{2}}\right)$$
 Substitute $\frac{342}{\pi r^{2}}$ for *h*.

Substitute $\frac{342}{\pi r^2}$ for *h*.

INTERPRET **FUNCTIONS**

..... The function for the surface area is a rational function because it can be written as a quotient of polynomials:

$$S = \frac{2\pi r^3 + 684}{r}$$


 $=2\pi r^{2}+\frac{684}{r}$

Simplify.

STEP 3 **Graph** the function for the surface area *S* using a graphing calculator. Then use the minimum feature to find the minimum value of S.

> You get a minimum value of about 271, which occurs when $r \approx 3.79$ and

$$h \approx \frac{342}{\pi (3.79)^2} \approx 7.58$$

So, the soup can using the least amount of material has a radius of about 3.79 centimeters and a height of about 7.58 centimeters. Notice that the height and the diameter are equal for this can.

GUIDED PRACTICE for Example 4

5. WHAT IF? In Example 4, suppose the manufacturer wants to find the most efficient packaging for a soup can with a volume of 544 cubic centimeters. Find the dimensions of this can.