EXAMPLE 2 Graph a rational function $(m=n)$

Graph $y=\frac{2 x^{2}}{x^{2}-9}$.

REVIEW ZEROS OF FUNCTIONS
For help with finding zeros of functions, see p. 252.

Solution

The zero of the numerator $2 x^{2}$ is 0 , so 0 is an x-intercept. The zeros of the denominator $x^{2}-9$ are ± 3, so $x=3$ and $x=-3$ are vertical asymptotes.

The numerator and denominator have the same degree, so the horizontal asymptote is $y=\frac{a_{m}}{b_{n}}=\frac{2}{1}=2$.
Plot points between and beyond the vertical asymptotes.

EXAMPLE 3 Graph a rational function ($m>n$)

Graph $y=\frac{x^{2}+3 x-4}{x-2}$.

Solution

The numerator factors as $(x+4)(x-1)$, so the x-intercepts are -4 and 1 . The zero of the denominator $x-2$ is 2 , so $x=2$ is a vertical asymptote.

The degree of the numerator, 2 , is greater than the degree of the denominator, 1 , so the graph has no horizontal asymptote. The graph has the same end behavior as the graph of $y=x^{2-1}=x$. Plot points on each side of the vertical asymptote.
To the left of $\boldsymbol{x}=\mathbf{2}\left\{\begin{array}{|c|c|}\hline x & y \\ \hline-8 & -3.6 \\ \hline-4 & 0 \\ \hline 0 & 2 \\ \hline 1 & 0 \\ \hline 3 & 14 \\ \hline 4 & 12 \\ \hline 8 & 14 \\ \hline 12 & 17.6 \\ \hline\end{array}\right.$

