8.3 Graph General Rational Functions
 2A.10.A, 2A.10.B
 2A.10.C, 2A.10.F

Before You graphed rational functions involving linear polynomials. You will graph rational functions with higher-degree polynomials. So you can solve problems about altitude, as in Ex. 35.

Key Vocabulary

- end behavior, p. 339
- asymptote, $p .478$
- rational function, p. 558

KEY CONCEPT

For Your Notebook

Graphs of Rational Functions

Let $p(x)$ and $q(x)$ be polynomials with no common factors other than ± 1. The graph of the following rational function has the characteristics listed below.

$$
f(x)=\frac{p(x)}{q(x)}=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}}
$$

1. The x-intercepts of the graph of f are the real zeros of $p(x)$.
2. The graph of f has a vertical asymptote at each real zero of $q(x)$.
3. The graph of f has at most one horizontal asymptote, which is determined by the degrees m and n of $p(x)$ and $q(x)$.

$\boldsymbol{m}<\boldsymbol{n}$	The line $y=0$ is a horizontal asymptote.
$\boldsymbol{m}=\boldsymbol{n}$	The line $y=\frac{a_{m}}{b_{n}}$ is a horizontal asymptote.
$\boldsymbol{m}>\boldsymbol{n}$	The graph has no horizontal asymptote. The graph's end behavior is the same as the graph of $y=\frac{a_{m}}{b_{n}} x^{m-n}$.

EXAMPLE 1 Graph a rational function ($m<n$)

Graph $y=\frac{6}{x^{2}+1}$. State the domain and range.

Solution

The numerator has no zeros, so there is no x-intercept. The denominator has no real zeros, so there is no vertical asymptote.

The degree of the numerator, 0 , is less than the degree of the denominator, 2. So, the line $y=0$ (the x-axis) is a horizontal asymptote.

The graph passes through the points $(-3,0.6),(-1,3)$, $(0,6),(1,3)$, and $(3,0.6)$. The domain is all real numbers, and the range is $0<y \leq 6$.

