8.2 Graph Rational Functions

a.5, 2A.10.A,

2A.10.B, 2A.10.F

QUESTION How can you use a graphing calculator to graph rational functions?

Most graphing calculators have two graphing modes: connected mode and dot mode. Connected mode displays the graph of a rational function as a smooth curve, while dot mode displays the graph as a series of dots.

EXAMPLE Graph a rational function

Graph $y=\frac{x+3}{x-3}$.

STEP 1 Enter function

Enter the rational function, using parentheses.

STEP 2 Use connected mode
Graph the function in connected mode.

STEP 3 Use dot mode
Graph the function in dot mode.

The graph in Step 2 includes a vertical line at approximately $x=3$. This line is not part of the graph. It is simply the graphing calculator's attempt at connecting the two branches of the graph.

PRACTICE

Use a graphing calculator to graph the rational function. Choose a viewing window that displays the important characteristics of the graph.

1. $y=\frac{5}{x}+2$
2. $y=7-\frac{3}{x}$
3. $y=4+\frac{2}{x-5}$
4. $y=\frac{6}{x+1}+2$
5. $y=\frac{7}{2 x+8}$
6. $y=\frac{9-2 x}{x-3}$
7. $f(x)=\frac{x-4}{x+2}$
8. $g(x)=\frac{5 x-2}{3 x+9}$
9. SKATEBOARDING You are trying to decide whether it is worth joining a skate park. It costs $\$ 100$ to join and then $\$ 4$ for each visit. Write a function that gives the average cost y per visit after x visits. Graph the function. What happens to the average cost as the number of visits increases? What are a reasonable domain and range for the function?
