

8.2 Graph Rational Functions 4.5, 2A.10.A, 2A.10.B, 2A.10.F

QUESTION

How can you use a graphing calculator to graph rational functions?

Most graphing calculators have two graphing modes: connected mode and dot mode. Connected mode displays the graph of a rational function as a smooth curve, while *dot* mode displays the graph as a series of dots.

EXAMPLE Graph a rational function

Graph
$$y = \frac{x+3}{x-3}$$
.

STEP 1 Enter function

Enter the rational function, using parentheses.

STEP 2 Use connected mode

Graph the function in connected mode.

STEP 3 Use dot mode

Graph the function in dot mode.

The graph in Step 2 includes a vertical line at approximately x = 3. This line is not part of the graph. It is simply the graphing calculator's attempt at connecting the two branches of the graph.

PRACTICE

Use a graphing calculator to graph the rational function. Choose a viewing window that displays the important characteristics of the graph.

1.
$$y = \frac{5}{x} + 2$$

2.
$$y = 7 - \frac{3}{x}$$

3.
$$y = 4 + \frac{2}{x - 5}$$

1.
$$y = \frac{5}{x} + 2$$
 2. $y = 7 - \frac{3}{x}$ **3.** $y = 4 + \frac{2}{x - 5}$ **4.** $y = \frac{6}{x + 1} + 2$

5.
$$y = \frac{7}{2x + 8}$$

6.
$$y = \frac{9-2x}{x-3}$$

7.
$$f(x) = \frac{x-4}{x+2}$$

5.
$$y = \frac{7}{2x+8}$$
 6. $y = \frac{9-2x}{x-3}$ **7.** $f(x) = \frac{x-4}{x+2}$ **8.** $g(x) = \frac{5x-2}{3x+9}$

9. SKATEBOARDING You are trying to decide whether it is worth joining a skate park. It costs \$100 to join and then \$4 for each visit. Write a function that gives the average cost y per visit after x visits. Graph the function. What happens to the average cost as the number of visits increases? What are a reasonable domain and range for the function?