EXAMPLE 3 Graph a rational function of the form $\boldsymbol{y}=\frac{\boldsymbol{a x}+\boldsymbol{b}}{\boldsymbol{C x}+\boldsymbol{d}}$

Graph $y=\frac{2 x+1}{x-3}$. State the domain and range.

Solution

STEP 1 Draw the asymptotes. Solve $x-3=0$ for x to find the vertical asymptote $x=3$. The horizontal asymptote is the line $y=\frac{a}{c}=\frac{2}{1}=2$.

STEP 2 Plot points to the left of the vertical asymptote, such as $(2,-5)$ and $\left(0,-\frac{1}{3}\right)$, and points to the right, such as $(4,9)$
 and $\left(6, \frac{13}{3}\right)$.

STEP 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

- The domain is all real numbers except 3 .

The range is all real numbers except 2.

DRAW GRAPHS
Because the number of models and average cost cannot be negative, graph only the branch of the hyperbola that lies in the first quadrant.

Example 4 * TAKS REASONING: Multi-Step Problem

3-D MODELING A 3-D printer builds up layers of material to make three-dimensional models. Each deposited layer bonds to the layer below it. A car company decides to make small display models of its vehicles using a 3-D printer. The printer costs $\$ 24,000$. The material for each model costs $\$ 300$.

- Write an equation that gives the average cost per model as a function of the number of models printed.
- Graph the function. Use the graph to estimate how many models must be printed for the average cost per model to fall to $\$ 700$.
- What happens to the average cost as more models are printed?

Solution

STEP 1 Write a function. Let c be the average cost and m be the number of models printed.
$c=\frac{\text { Unit cost } \cdot \text { Number printed }+ \text { Cost of printer }}{\text { Number printed }}=\frac{300 m+24,000}{m}$
STEP 2 Graph the function. The asymptotes are the lines $m=0$ and $c=300$. The average cost falls to $\$ 700$ per model after 60 models are printed.

STEP 3 Interpret the graph. As more models are printed, the average cost per model approaches $\$ 300$.

