## **KEY CONCEPT**

For Your Notebook

### Graphing Translations of Simple Rational Functions

To graph a rational function of the form  $y = \frac{a}{x-h} + k$ , follow these steps:

**STEP 1** Draw the asymptotes x = h and y = k.

- *STEP 2* **Plot** points to the left and to the right of the vertical asymptote.
- *STEP 3* **Draw** the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.



# EXAMPLE 2 Graph a rational function of the form $y = \frac{a}{x - h} + k$

Graph  $y = \frac{-4}{x+2} - 1$ . State the domain and range.

#### Solution

INTERPRET TRANSFORMATIONS

The graph of  $y = \frac{-4}{x+2} - 1$  is the graph of  $y = \frac{-4}{x}$ translated left 2 units and down 1 unit. **STEP 2** Plot points to the left of the vertical asymptote, such as (-3, 3) and (-4, 1), and points to the right, such as (-1, -5) and (0, -3).

**STEP 1** Draw the asymptotes x = -2 and y = -1.

*STEP 3* **Draw** the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.



The domain is all real numbers except -2, and the range is all real numbers except -1.

Animated Algebra at classzone.com

## **GUIDED PRACTICE** for Examples 1 and 2

Graph the function. State the domain and range.

**1.** 
$$f(x) = \frac{-4}{x}$$
 **2.**  $y = \frac{8}{x} - 5$  **3.**  $y = \frac{1}{x - 3} + 2$ 

**OTHER RATIONAL FUNCTIONS** All rational functions of the form  $y = \frac{ax + b}{cx + d}$  also have graphs that are hyperbolas.

- The vertical asymptote of the graph is the line  $x = -\frac{d}{c}$ , because the function is undefined when the denominator cx + d is zero.
- The horizontal asymptote is the line  $y = \frac{a}{c}$ .