8. 2 Graph Simple Rational Functions

You graphed polynomial functions. You will graph rational functions. So you can find average monthly costs, as in Ex. 38.

Key Vocabulary

- rational function
- domain, p. 72
\bullet range, p. 72
- asymptote, p. 478

A rational function has the form $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$. The inverse variation function $f(x)=\frac{a}{x}$ is a rational function. The graph of this function when $a=1$ is shown below.

KEY CONCEPT

For Your Notebook

Parent Function for Simple Rational Functions

The graph of the parent function $f(x)=\frac{1}{x}$ is a hyperbola, which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers.

Any function of the form $g(x)=\frac{a}{x}(a \neq 0)$ has the same asymptotes, domain, and range as the function $f(x)=\frac{1}{x}$.

EXAMPLE 1 Graph a rational function of the form $y=\frac{a}{x}$

Graph the function $y=\frac{6}{x}$. Compare the graph with the graph of $y=\frac{1}{x}$.

Solution

STEP 1 Draw the asymptotes $x=0$ and $y=0$.
STEP 2 Plot points to the left and to the right of the vertical asymptote, such as $(-3,-2)$, $(-2,-3),(2,3)$, and $(3,2)$.

STEP 3 Draw the branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The graph of $y=\frac{6}{x}$ lies farther from the axes than the graph of $y=\frac{1}{x}$.
Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range.

