CHECKING FOR INVERSE VARIATION The general equation $y = \frac{a}{r}$ for inverse

variation can be rewritten as xy = a. This tells you that a set of data pairs (x, y) shows inverse variation if the products xy are constant or approximately constant.

EXAMPLE 4 Check data for inverse variation

COMPUTER CHIPS The table compares the area *A* (in square millimeters) of a computer chip with the number *c* of chips that can be obtained from a silicon wafer.

- Write a model that gives c as a function of A.
- Predict the number of chips per wafer when the area of a chip is 81 square millimeters.

Area (mm²), A	58	62	66	70
Number of chips, c	448	424	392	376

Solution

STEP 1 **Calculate** the product *A* • *c* for each data pair in the table.

To check data pairs (*x*, *y*) for *direct* variation, you find the *quotients*

AVOID ERRORS

 $\frac{y}{x}$. However, to check

data pairs for *inverse* variation, you find the *products xy*.

58(448) = 25,98462(424) = 26,28866(392) = 25,87270(376) = 26,320

Each product is approximately equal to 26,000. So, the data show inverse variation. A model relating *A* and *c* is:

$$A \cdot c = 26,000, \text{ or } c = \frac{26,000}{A}$$

STEP 2 Make a prediction. The number of chips per wafer for a chip with an area of 81 square millimeters is $c = \frac{26,000}{81} \approx 321$.

GUIDED PRACTICE for Example 4

8. WHAT IF? In Example 4, predict the number of chips per wafer when the area of each chip is 79 square millimeters.

