CHECKING FOR INVERSE VARIATION The general equation $y=\frac{a}{x}$ for inverse variation can be rewritten as $x y=a$. This tells you that a set of data pairs (x, y) shows inverse variation if the products $x y$ are constant or approximately constant.

EXAMPLE 4 Check data for inverse variation

COMPUTER CHIPS The table compares the area A (in square millimeters) of a computer chip with the number c of chips that can be obtained from a silicon wafer.

- Write a model that gives c as a function of A .
- Predict the number of chips per wafer when the area of a chip is 81 square millimeters.

Area (mm²), \boldsymbol{A}	58	62	66	70
Number of chips, c	448	424	392	376

Solution

AVOID ERRORS

To check data pairs (x, y) for direct variation, you find the quotients $\frac{y}{x}$. However, to check data pairs for inverse variation, you find the products xy.

STEP 1 Calculate the product $A \cdot c$ for each data pair in the table.

$$
\begin{aligned}
& 58(448)=25,984 \\
& 62(424)=26,288 \\
& 66(392)=25,872 \\
& 70(376)=26,320
\end{aligned}
$$

Each product is approximately equal to 26,000 . So, the data show inverse variation. A model relating A and c is:

$$
A \cdot c=26,000, \text { or } c=\frac{26,000}{A}
$$

STEP 2 Make a prediction. The number of chips per wafer for a chip with an area of 81 square millimeters is $c=\frac{26,000}{81} \approx 321$.

GUIDED Practice for Example 4

8. WHAT IF? In Example 4, predict the number of chips per wafer when the area of each chip is 79 square millimeters.

KEY CONCEPT

For Your Notebook

Joint Variation

Joint variation occurs when a quantity varies directly with the product of two or more other quantities. In the equations below, a is a nonzero constant.

$$
\begin{array}{ll}
z=a x y & z \text { varies jointly with } x \text { and } y . \\
p=a q r s & p \text { varies jointly with } q, r \text {, and } s .
\end{array}
$$

