EXAMPLE 3 Write an inverse variation model

MP3 PLAYERS The number of songs that can be stored on an MP3 player varies inversely with the average size of a song. A certain MP3 player can store 2500 songs when the average size of a song is 4 megabytes (MB).

- Write a model that gives the number n of songs that will fit on the MP3 player as a function of the average song size s (in megabytes).
- Make a table showing the number of songs that will fit on the MP3 player if the average size of a song is 2 MB , $2.5 \mathrm{MB}, 3 \mathrm{MB}$, and 5 MB as shown below. What happens to the number of songs as the average song size increases?

Solution

STEP 1 Write an inverse variation model.

$$
\begin{array}{rl}
n & =\frac{a}{s} \\
2500 & =\frac{a}{4} \\
10,000 & =a \quad \text { Write general equation for inverse variation. } \\
\text { Solve for } a . \\
\text { A model is } n & n=\frac{10,000}{s} .
\end{array}
$$

STEP 2 Make a table of values.

Average size of song (MB), \boldsymbol{s}	2	2.5	3	5
Number of songs, \boldsymbol{n}	5000	4000	3333	2000

From the table, you can see that the number of songs that will fit on the MP3 player decreases as the average song size increases.

Guided Practice for Examples 1, 2, and 3

Tell whether \boldsymbol{x} and \boldsymbol{y} show direct variation, inverse variation, or neither.

1. $3 x=y$
2. $x y=0.75$
3. $y=x-5$

The variables x and y vary inversely. Use the given values to write an equation relating x and y. Then find y when $x=2$.
4. $x=4, y=3$
5. $x=8, y=-1$
6. $x=\frac{1}{2}, y=12$
7. WHAT IF? In Example 3, what is a model for the MP3 player if it stores 3000 songs when the average song size is 5 MB ?

