MIXED TAKS PRACTICE

7. Alan throws a tennis ball into the air in order to serve the ball. The height h (in feet) of the ball after it leaves his hand can be modeled by $h=-16 t^{2}+12 t+5$ where t is the time (in seconds). He hits the ball when it falls back to a height of 7 feet. About how long was the ball in the air? TAKS Obj. 5

A 0.25 sec
B 0.5 sec
C 0.75 sec
D 2.5 sec
8. What is the y-intercept of the line $5 x-6 y=-2$? TAKS Obj. 3
F $b=-3$
G $b=-\frac{2}{5}$
H $b=\frac{1}{3}$
J $b=3$
9. Which expression is equivalent to
$-\frac{3}{4}(12 x-4 y)+(5 y-8 x)$? TAKS Obj. 2
A $-4 x-7 y$
B $x+4 y$
C $4 y-17 x$
D $8 y-17 x$
10. The diagram below shows the first three stages of a sequence. What fraction of the circle is shaded in the nth stage? TAKS Obj. 6

Stage 1

Stage 2

Stage 3
F $\frac{1}{2^{n}}$
G $\frac{1}{3 n-1}$
H $\frac{1}{3^{n-1}+1}$
J $\frac{1}{2 n}$
11. Which inequality best describes the range of the function represented by this graph? TAKS Obj. 2

A $-3<y<3$
B $-3 \leq y \leq 3$
C $-4<y \leq 3$
D $-4 \leq y \leq 3$
12. The graph is the solution for which inequality? TAKS Obj. 1

F $-3 x+5 y \leq 5$
G $3 x+5 y<5$
H $-5 x+3 y>3$
J $5 x-3 y \geq 3$
13. GRIDDED ANSWER A restaurant's dining room contains square and hexagonal tables. Square tables seat 4 people and hexagonal tables seat 6 people. The number of hexagonal tables is two less than three times the number of square tables. A maximum of 54 customers can be seated in the dining room. How many hexagonal tables are in the dining room? TAKS Obj. 4

Record your answer and fill in the bubbles on your answer document. Be sure to use the correct place value.

