7 TAKS PREPARATION

REVIEWING NETS AND COMPONENTS OF SOLIDS

A polyhedron is a solid that is bounded by polygons, called faces, that enclose a single region of space. An edge of a polyhedron is a line segment formed by the intersection of two faces. A vertex of a polyhedron is a point where three or more edges meet.

A net is a two-dimensional representation of all the faces of a solid.

To solve a problem involving the numbers of faces, vertices, and edges of a polyhedron, you need to be familiar with the following theorem.

Euler's Theorem

The numbers of faces F, vertices V, and edges E of a polyhedron are related by the formula $F+V=E+2$.

EXAMPLE

The solid at the right has 26 faces: 18 squares and 8 triangles. Calculate the number of vertices of the solid.

Solution
STEP 1 Count edges. On their own, 18 squares and 8 triangles have $18(4)+8(3)=96$ edges.

In the solid, each edge is shared by exactly
 two polygons. So, the number of edges is $\frac{1}{2}(96)=48$.

STEP 2 Find the number of vertices using Euler's theorem.

$$
\begin{aligned}
F+V & =E+2 & & \text { Write equation from Euler's theorem. } \\
26+V & =48+2 & & \text { Substitute } \mathbf{2 6} \text { for } \boldsymbol{F} \text { and } \mathbf{4 8} \text { for } E . \\
V & =24 & & \text { Solve for } V .
\end{aligned}
$$

- The solid has 24 vertices.

