CHAPTER REVIEW

6	Solve Exponential and Logarithmic Equations							
	Example							
	Solve the equation.							
	a. $7^x = 12$	b. $\log_2(3x - 7) = 5$						
	$\log_7 7^x = \log_7 12$	$2^{\log_2(3x-7)} = 2^5$						
	$x = \log_7 12$	3x - 7 = 32						
	$x = \frac{\log 12}{\log 7} \approx 1.277$	<i>x</i> = 13						
	EVEDCISES							

EXAMPLES 2, 5, and 6 on pp. 516–518 for Exs. 32–34

EXERCISES

Solve the equation. Check for extraneous solutions.

Exs. 32–34 **32.** $5^x = 32$

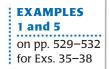
7.7 Write and Apply Exponential and Power Functions *pp. 529–536*

33. $\log_3(2x-5) = 2$

EXAMPLE

Write an exponential function $y = ab^x$ whose graph passes through (-1, 2) and (3, 32).

Substitute the coordinates of the two given points into $y = ab^x$.


 $2 = ab^{-1}$ Substitute 2 for y and -1 for x.

 $32 = ab^3$ Substitute 32 for y and 3 for x.

Solve for *a* in the first equation to obtain a = 2b, and substitute this expression for *a* in the second equation.

$32 = (2b)b^3$	Substitute 2b for a in second equation.				
$32 = 2b^4$	Product of powers property				
$16 = b^4$	Divide each side by 2.				
2 = b	Take the positive fourth root because $b > 0$.				
Because $b = 2$, it follows that $a = 2(2) = 4$. So, $y = 4 \cdot 2^x$.					

EXERCISES

Write an exponential function $y = ab^x$ whose graph passes through the points.

35. (3, 8), (5, 2)

36. (-2, 2), (1, 0.25)

37. (2, 9), (4, 324)

34. $\ln x + \ln (x + 2) = 3$

38. SPORTING GOODS A store begins selling a new type of basketball shoe. The table shows sales of the shoe over time. Find a power model for the data.

Week, x	1	2	3	4	5	6
Pairs sold, y	28	47	64	79	94	107