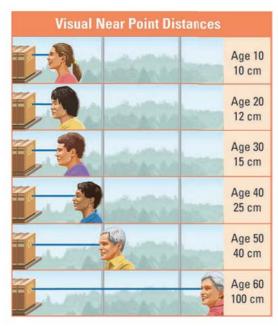
32. ASTRONOMY The table shows the mean distance x from the sun (in astronomical units) and the period y (in years) of six planets. Draw a scatter plot of the data pairs ($\ln x$, $\ln y$). Find a power model for the original data.

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn 9.539	
x	0.387	0.723	1.000	1.524	5.203		
у	0.241	0.615	1.000	1.881	11.862	29.458	

TEXAS @Homeointended entropy with the probability of the probability o


33. HORSTRESPONSE The table shows the numbers of business and non-business users of instant messaging for the years 1998–2004.

Years since 1997	1	2	3	4	5	6	7
Business users (in millions)	1	2	5	7	20	40	80
Non-business users (in millions)	55	97	140	160	195	235	260

- **a.** Find an exponential model for the number of business users over time.
- **b.** *Explain* how to tell whether a linear, exponential, or power function best models the number of non-business users over time. Then find the best-fitting model.
- **34. MULTI-STEP PROBLEM** The boiling point of water increases with atmospheric pressure. At sea level, where the atmospheric pressure is about 760 millimeters of mercury, water boils at 100°C. The table shows the boiling point *T* of water (in degrees Celsius) for several different values of atmospheric pressure *P* (in millimeters of mercury).
 - **a. Graph** Draw a scatter plot of the data pairs $(\ln P, \ln T)$.
 - **b. Model** Find a power model for the original data.
 - **c. Predict** When the atmospheric pressure is 620 millimeters of mercury, at what temperature does water boil?

T			
60			
70			
80			
90			
100			
110			

- **35. PATEMOSSESINGNSE** Your visual *near point* is the closest point at which your eyes can see an object distinctly. Your near point moves farther away from you as you grow older. The diagram shows the near point *y* (in centimeters) at age *x* (in years).
 - **a. Graph** Draw a scatter plot of the data pairs (*x*, ln *y*).
 - **b. Graph** Draw a scatter plot of the data pairs $(\ln x, \ln y)$.
 - **c. Interpret** Based on your scatter plots, does an exponential function or a power function best fit the original data? *Explain* your reasoning.
 - **d. Model** Based on your answer for part (c), write a model for the original data. Use your model to predict the near point for an 80-year-old person.

