32. ASTRONOMY The table shows the mean distance x from the sun (in astronomical units) and the period y (in years) of six planets. Draw a scatter plot of the data pairs $(\ln x, \ln y)$. Find a power model for the original data.

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn
\boldsymbol{x}	0.387	0.723	1.000	1.524	5.203	9.539
\boldsymbol{y}	0.241	0.615	1.000	1.881	11.862	29.458

33. Thorsirmbionne the table shows the numbers of business and nonbusiness users of instant messaging for the years 1998-2004.

Years since 1997	1	2	3	4	5	6	7
Business users (in millions)	1	2	5	7	20	40	80
Non-business users (in millions)	55	97	140	160	195	235	260

a. Find an exponential model for the number of business users over time.
b. Explain how to tell whether a linear, exponential, or power function best models the number of non-business users over time. Then find the bestfitting model.
34. MULTI-STEP PROBLEM The boiling point of water increases with atmospheric pressure. At sea level, where the atmospheric pressure is about 760 millimeters of mercury, water boils at $100^{\circ} \mathrm{C}$. The table shows the boiling point T of water (in degrees Celsius) for several different values of atmospheric pressure P (in millimeters of mercury).
a. Graph Draw a scatter plot of the data pairs $(\ln P, \ln T)$.
b. Model Find a power model for the original data.
c. Predict When the atmospheric pressure is 620 millimeters of mercury, at what temperature does water boil?

\boldsymbol{P}	\boldsymbol{T}
149	60
234	70
355	80
526	90
760	100
1075	110

35. EXAENDEDSEARRONSE Your visual near point is the closest point at which your eyes can see an object distinctly. Your near point moves farther away from you as you grow older. The diagram shows the near point y (in centimeters) at age x (in years).
a. Graph Draw a scatter plot of the data pairs $(x, \ln y)$.
b. Graph Draw a scatter plot of the data pairs $(\ln x, \ln y)$.
c. Interpret Based on your scatter plots, does an exponential function or a power function best fit the original data? Explain your reasoning.
d. Model Based on your answer for part (c), write a model for the original data. Use your model to predict the near point for an 80-year-old person.

