**POWER REGRESSION** A graphing calculator that performs power regression uses all of the original data to find the best-fitting model.

# **EXAMPLE 6** Use power regression

**BIOLOGY** Use a graphing calculator to find a power model for the data in Example 5. Estimate the weight of a bird with a wingspan of 4.5 feet.

## Solution

Enter the original data into a graphing calculator and perform a power regression. The model is  $y = 0.0442x^{2.87}$ .

Substituting x = 4.5 into the model gives  $y = 0.0442(4.5)^{2.87} \approx 3.31$  pounds.



#### GU

## **GUIDED PRACTICE** for Examples 5 and 6

**9.** The table below shows the atomic number *x* and the melting point *y* (in degrees Celsius) for the alkali metals. Find a power model for the data.

| Alkali metal     | Lithium | Sodium | Potassium | Rubidium | Cesium |
|------------------|---------|--------|-----------|----------|--------|
| Atomic number, x | 3       | 11     | 19        | 37       | 55     |
| Melting point, y | 180.5   | 97.8   | 63.7      | 38.9     | 28.5   |

# 7.7 EXERCISES

HOMEWORK KEY

 = WORKED-OUT SOLUTIONS on p. WS1 for Exs. 11, 23, and 33
 = TAKS PRACTICE AND REASONING Exs. 27, 33, 35, 37, and 38

| Skill Practice                                  |                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                    |                                 |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|--|--|--|
|                                                 | <ol> <li>VOCABULARY Copy and complete: Given a set of more than two data pairs (<i>x</i>, <i>y</i>), you can decide whether a(n) <u>?</u> function fits the data well by making a scatter plot of the points (<i>x</i>, ln <i>y</i>).</li> <li>WURRING <i>Explain</i> how you can determine whether a power function is a good model for a set of data pairs (<i>x</i>, <i>y</i>).</li> </ol> |                               |                                    |                                 |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                    |                                 |  |  |  |
| <b>EXAMPLE 1</b><br>on p. 529<br>for Exs. 3–10  | <b>WRITING EXPONENTIAL FUNCTIONS</b> Write an exponential function $y = ab^x$ whose graph passes through the given points.                                                                                                                                                                                                                                                                    |                               |                                    |                                 |  |  |  |
|                                                 | <b>3.</b> (1, 3), (2, 12)                                                                                                                                                                                                                                                                                                                                                                     | <b>4.</b> (2, 24), (3, 144)   | <b>5.</b> (3, 1), (5, 4)           | <b>6.</b> (3, 27), (5, 243)     |  |  |  |
|                                                 | <b>7.</b> (1, 2), (3, 50)                                                                                                                                                                                                                                                                                                                                                                     | <b>8.</b> (1, 40), (3, 640)   | <b>9.</b> (-1, 10), (4, 0.31)      | <b>10.</b> (2, 6.4), (5, 409.6) |  |  |  |
| <b>EXAMPLE 2</b><br>on p. 530<br>for Exs. 11–14 | <b>FINDING EXPONENTIAL MODELS</b> Use the points ( <i>x</i> , <i>y</i> ) to draw a scatter plot of the points ( <i>x</i> , ln <i>y</i> ). Then find an exponential model for the data.                                                                                                                                                                                                        |                               |                                    |                                 |  |  |  |
|                                                 | <b>11.</b> (1, 18), (2, 36), (3, 72), (4, 144), (5, 288)<br><b>12.</b> (1, 3.3), (2, 10.1), (3, 30.6), (4, 92.7), (5, 280.4)                                                                                                                                                                                                                                                                  |                               |                                    |                                 |  |  |  |
|                                                 | <b>13.</b> (1, 9.8), (2, 12.2),                                                                                                                                                                                                                                                                                                                                                               | (3, 15.2), (4, 19), (5, 23.8) | <b>14.</b> (1, 1.4), (2, 6.7), (3, | 32.9), (4. 161.4), (5, 790.9)   |  |  |  |