TRANSFORMING POWER DATA A set of more than two points (x, y) fits a power pattern if and only if the set of transformed points $(\ln x, \ln y)$ fits a linear pattern.

Graph of points (x, y)

The graph is a power curve.

Graph of points $(\ln x, \ln y)$

The graph is a line.

EXAMPLE 5 Find a power model

BIOLOGY The table at the right shows the typical wingspans x (in feet) and the typical weights y (in pounds) for several types of birds.

- Draw a scatter plot of the data pairs $(\ln x, \ln y)$. Is a power model a good fit for the original data pairs (x, y) ?
- Find a power model for the original data.

Bird	Wingspan (ft), \boldsymbol{x}	Weight (lb), \boldsymbol{y}
Cuckoo	1.90	0.23
Crow	2.92	1.04
Curlew	3.41	1.69
Goose	5.35	6.76
Vulture	8.40	16.03

Solution

STEP 1 Use a calculator to create a table of data pairs $(\ln x, \ln y)$.

$\ln x$	0.642	1.072	1.227	1.677	2.128
$\ln y$	-1.470	0.039	0.525	1.911	2.774

STEP 2 Plot the new points as shown. The points lie close to a line, so a power model should be a good fit for the original data.

STEP 3 Find a power model $y=a x^{b}$ by choosing two points on the line, such as ($1.227,0.525$) and ($2.128,2.774$). Use these points to write an equation of the line. Then solve for y.

$\ln y-y_{1}=m\left(\ln x-x_{1}\right)$
$\ln y-2.774=2.5(\ln x-2.128)$

$$
\begin{aligned}
\ln y & =2.5 \ln x-2.546 \\
\ln y & =\ln x^{2.5}-2.546 \\
y & =e^{\ln x^{2.5}-2.546} \\
y & =e^{-2.546} \cdot e^{\ln x^{2.5}} \\
y & =0.0784 x^{2.5}
\end{aligned}
$$

Equation when axes are $\ln x$ and $\ln y$
Substitute.
Simplify.
Power property of logarithms
Exponentiate each side using base e.
Product of powers property
Simplify.

