Write an exponential function $y=a b^{x}$ whose graph passes through the given points.

1. $(1,6),(3,24)$
2. $(2,8),(3,32)$
3. $(3,8),(6,64)$
4. WHAT IF? In Examples 2 and 3, how would the exponential models change if the scooter sales were as shown in the table below?

Year, x	1	2	3	4	5	6	7
Number of scooters sold, y	15	23	40	52	80	105	140

WRITING POWER FUNCTIONS Recall from Lesson 6.3 that a power function has the form $y=a x^{b}$. Because there are only two constants (a and b), only two points are needed to determine a power curve through the points.

EXAMPLE 4 Write a power function

Write a power function $y=a x^{b}$ whose graph passes through $(3,2)$ and $(6,9)$.

Solution

STEP 1 Substitute the coordinates of the two given points into $y=a x^{b}$.

$$
2=a \cdot 3^{b} \quad \text { Substitute } 2 \text { for } y \text { and } 3 \text { for } x
$$

$$
9=a \cdot 6^{b} \quad \text { Substitute } 9 \text { for } y \text { and } 6 \text { for } x .
$$

STEP 2 Solve for a in the first equation to obtain $a=\frac{2}{3^{b}}$, and substitute this expression for a in the second equation.

$$
\begin{aligned}
9 & =\left(\frac{2}{3^{b}}\right) 6^{b} & & \text { Substitute } \frac{2}{3^{b}} \text { for } a \text { in second equation. } \\
9 & =2 \cdot 2^{b} & & \text { Simplify. } \\
4.5 & =2^{b} & & \text { Divide each side by } 2 . \\
\log _{2} 4.5 & =b & & \text { Take } \log _{2} \text { of each side. } \\
\frac{\log 4.5}{\log 2} & =b & & \text { Change-of-base formula } \\
2.17 & \approx b & & \text { Use a calculator. }
\end{aligned}
$$

STEP 3 Determine that $a=\frac{2}{3^{2.17}} \approx 0.184$. So, $y=0.184 x^{2.17}$.

Guided Practice for Example 4

Write a power function $y=a x^{b}$ whose graph passes through the given points.
5. $(2,1),(7,6)$
6. $(3,4),(6,15)$
7. $(5,8),(10,34)$
8. REASONING Try using the method of Example 4 to find a power function whose graph passes through $(3,5)$ and $(3,7)$. What can you conclude?

