\checkmark

Write an exponential function $y = ab^x$ whose graph passes through the given points.

- **1.** (1, 6), (3, 24) **2.** (2, 8), (3, 32) **3.** (3, 8), (6, 64)
- **4. WHAT IF?** In Examples 2 and 3, how would the exponential models change if the scooter sales were as shown in the table below?

Year, x	1	2	3	4	5	6	7
Number of scooters sold, y	15	23	40	52	80	105	140

WRITING POWER FUNCTIONS Recall from Lesson 6.3 that a power function has the form $y = ax^b$. Because there are only two constants (*a* and *b*), only two points are needed to determine a power curve through the points.

EXAMPLE 4 Write a power function

Write a power function $y = ax^b$ whose graph passes through (3, 2) and (6, 9).

Solution

STEP 1 Substitute the coordinates of the two given points into $y = ax^{b}$.

 $2 = a \cdot 3^b$ Substitute 2 for y and 3 for x.

 $9 = a \cdot 6^b$ Substitute 9 for y and 6 for x.

STEP 2 Solve for *a* in the first equation to obtain $a = \frac{2}{3^b}$, and substitute this expression for *a* in the second equation.

	$9 = \left(\frac{2}{3^{\boldsymbol{b}}}\right) 6^{\boldsymbol{b}}$	Substitute $\frac{2}{3^b}$ for <i>a</i> in second equation.
	$9 = 2 \cdot 2^b$	Simplify.
	$4.5 = 2^{b}$	Divide each side by 2.
	$\log_2 4.5 = b$	Take log ₂ of each side.
	$\frac{\log 4.5}{\log 2} = b$	Change-of-base formula
	$2.17 \approx b$	Use a calculator.
3	Determine that <i>a</i> =	$\frac{2}{3^{2.17}} \approx 0.184$. So, $y = 0.184x^{2.17}$.

GUIDED PRACTICE for Example 4

Write a power function $y = ax^b$ whose graph passes through the given points.

5. (2, 1), (7, 6)

6. (3, 4), (6, 15)

7. (5, 8), (10, 34)

8. REASONING Try using the method of Example 4 to find a power function whose graph passes through (3, 5) and (3, 7). What can you conclude?