## EXAMPLE 2 Find an exponential model

**SCOOTERS** A store sells motor scooters. The table shows the number *y* of scooters sold during the *x*th year that the store has been open.

|                            |    |    |    | 0  |    | or |  |
|----------------------------|----|----|----|----|----|----|--|
| Year, x                    | 1  | 2  | 3  | 4  | 5  | 6  |  |
| Number of scooters sold, y | 12 | 16 | 25 | 36 | 50 | 67 |  |

- Draw a scatter plot of the data pairs (*x*, ln *y*). Is an exponential model a good fit for the original data pairs (*x*, *y*)?
- Find an exponential model for the original data.

### **Solution**

*STEP 1* Use a calculator to create a table of data pairs (*x*, ln *y*).

| x    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|------|------|------|------|------|------|------|------|
| In y | 2.48 | 2.77 | 3.22 | 3.58 | 3.91 | 4.20 | 4.56 |

*STEP 2* **Plot** the new points as shown. The points lie close to a line, so an exponential model should be a good fit for the original data.

choosing two points on the line, such as

(1, 2.48) and (7, 4.56). Use these points to

**STEP 3** Find an exponential model  $y = ab^x$  by



96

write an equation of the line. Then solve for y.  $\ln y - 2.48 = 0.35(x - 1)$ Equation of line  $\ln y = 0.35x + 2.13$ Simplify.  $y = e^{0.35x + 2.13}$ Exponentiate each side using base e.  $y = e^{2.13}(e^{0.35})^x$ Use properties of exponents.  $y = 8.41(1.42)^x$ Exponential model

**EXPONENTIAL REGRESSION** A graphing calculator that performs exponential regression uses all of the original data to find the best-fitting model.

# EXAMPLE 3 Use exponential regression

**SCOOTERS** Use a graphing calculator to find an exponential model for the data in Example 2. Predict the number of scooters sold in the eighth year.

### Solution

Enter the original data into a graphing calculator and perform an exponential regression. The model is  $y = 8.46(1.42)^x$ .

Substituting x = 8 (for year 8) into the model gives  $y = 8.46(1.42)^8 \approx 140$  scooters sold.



#### USE POINT-SLOPE FORM

Because the axes are x and ln y, the point-slope form is rewritten as ln  $y - y_1 = m(x - x_1)$ . The slope of the line through (1, 2.48) and (7, 4.56) is:  $\frac{4.56 - 2.48}{7 - 1} \approx 0.35$