EXAMPLE 2 Find an exponential model

SCOOTERS A store sells motor scooters. The table shows the number y of scooters sold during the x th year that the store has been open.

Year, x	1	2	3	4	5	6	7
Number of scooters sold, y	12	16	25	36	50	67	96

- Draw a scatter plot of the data pairs $(x, \ln y)$. Is an exponential model a good fit for the original data pairs (x, y) ?
- Find an exponential model for the original data.

Solution

STEP 1 Use a calculator to create a table of data pairs $(x, \ln y)$.

x	1	2	3	4	5	6	7
$\ln y$	2.48	2.77	3.22	3.58	3.91	4.20	4.56

STEP 2 Plot the new points as shown. The points lie close to a line, so an exponential model should be a good fit for the original data.

STEP 3 Find an exponential model $y=a b^{x}$ by choosing two points on the line, such as $(1,2.48)$ and $(7,4.56)$. Use these points to
 write an equation of the line. Then solve for y.

$$
\begin{aligned}
\ln y-2.48 & =0.35(x-1) & & \text { Equation of line } \\
\ln y & =0.35 x+2.13 & & \text { Simplify. } \\
y & =e^{0.35 x+2.13} & & \text { Exponentiate each side using base } e . \\
y & =e^{2.13}\left(e^{0.35}\right)^{x} & & \text { Use properties of exponents. } \\
y & =8.41(1.42)^{x} & & \text { Exponential model }
\end{aligned}
$$

EXPONENTIAL REGRESSION A graphing calculator that performs exponential regression uses all of the original data to find the best-fitting model.

EXAMPLE 3 Use exponential regression

SCOOTERS Use a graphing calculator to find an exponential model for the data in
Example 2. Predict the number of scooters sold in the eighth year.

Solution

Enter the original data into a graphing calculator and perform an exponential regression. The model is $y=8.46(1.42)^{x}$.
Substituting $x=8$ (for year 8) into the model gives $y=8.46(1.42)^{8} \approx 140$ scooters sold.

