\checkmark

GUIDED PRACTICE for Examples 1, 2, and 3

Solve the equation. Check for extraneous solutions.

1. $ x = 5$	2. $ x-3 = 10$	3. $ x+2 = 7$
4. $ 3x-2 = 13$	5. $ 2x+5 = 3x$	6. $ 4x-1 = 2x+9$

INEQUALITIES You can solve an absolute value inequality by rewriting it as a compound inequality and then solving each part.

т	For Your Notebook	
e Inequalities		
Equivalent form	Graph of solution	
-c < ax + b < c	<	
$-c \le ax + b \le c$	< + → →	
ax + b < -c or $ax + b > c$	←	
$ax + b \le -c$ or $ax + b \ge c$	\leftrightarrow \leftrightarrow	
	PTEquivalent form $-c < ax + b < c$ $-c < ax + b < c$ $ax + b < -c$ or $ax + b > c$ $ax + b < -c$ or $ax + b > c$ $ax + b < -c$ or $ax + b > c$	

EXAMPLE 4 Solve an inequality of the form |ax + b| > c

Solve |4x + 5| > 13. Then graph the solution.

Solution

The absolute value inequality is equivalent to 4x + 5 < -13 or 4x + 5 > 13.

First Inequality		Second Inequality
4x + 5 < -13	Write inequalities.	4x + 5 > 13
4x < -18	Subtract 5 from each side.	4x > 8
$x < -\frac{9}{2}$	Divide each side by 4.	<i>x</i> > 2

The solutions are all real numbers less than $-\frac{9}{2}$ or greater than 2. The graph is shown below.

GUIDED PRACTICE for Example 4

Solve the inequality. Then graph the solution. 7. $|x + 4| \ge 6$ **8.** |2x - 7| > 1 **9.** $|3x + 5| \ge 10$