Solve the equation. Check for extraneous solutions.

1. $|x|=5$
2. $|x-3|=10$
3. $|x+2|=7$
4. $|3 x-2|=13$
5. $|2 x+5|=3 x$
6. $|4 x-1|=2 x+9$

INEQUALITIES You can solve an absolute value inequality by rewriting it as a compound inequality and then solving each part.

KEY CONCEPT
 For Your Notebook

Absolute Value Inequalities

Inequality	Equivalent form	Graph of solution
$\|a x+b\|<c$	$-c<a x+b<c$	
$\|a x+b\| \leq c$	$-c \leq a x+b \leq c$	
	$\|a x+b\|>c$	$a x+b<-c$ or $a x+b>c$

EXAMPLE 4 Solve an inequality of the form $|a x+b|>c$

Solve $|4 x+5|>13$. Then graph the solution.

Solution

The absolute value inequality is equivalent to $4 x+5<-13$ or $4 x+5>13$.

First Inequality

$$
\begin{aligned}
& 4 x+5<-13 \quad \text { Write inequalities. } \\
& 4 x<-18 \quad \text { Subtract } 5 \text { from each side. } \\
& x<-\frac{9}{2} \\
& \text { Divide each side by } 4 . \\
& 4 x+5>13 \\
& 4 x>8 \\
& x>2
\end{aligned}
$$

Second Inequality

- The solutions are all real numbers less than $-\frac{9}{2}$ or greater than 2 . The graph is shown below.

AnimatedAlgebra at classzone.com

Guided Practice for Example 4

Solve the inequality. Then graph the solution.
7. $|x+4| \geq 6$
8. $|2 x-7|>1$
9. $|3 x+5| \geq 10$

