7.7 Write and Apply Exponential and Power Functions
 a.3, 2A.1.B,

 2A.11.F| Before | You wrote linear, quadratic, and other polynomial functions. |
| :---: | :--- |
| Now | You will write exponential and power functions. |
| Why? | So you can model biology problems, as in Example 5. |

Key Vocabulary

- power function, p. 428
- exponential
function, $p .478$

In Chapter 2, you learned that two points determine a line. Similarly, two points determine an exponential curve.

EXAMPLE 1 Write an exponential function

Write an exponential function $y=a b^{x}$ whose graph passes through $(1,12)$ and (3, 108).

Solution

STEP 1 Substitute the coordinates of the two given points into $y=a b^{x}$.

$$
\begin{aligned}
12=a b^{1} & \text { Substitute } 12 \text { for } y \text { and } 1 \text { for } x . \\
108=a b^{3} & \text { Substitute } 108 \text { for } y \text { and } 3 \text { for } x .
\end{aligned}
$$

STEP 2 Solve for a in the first equation to obtain $a=\frac{12}{b}$, and substitute this expression for a in the second equation.

$$
\begin{aligned}
108 & =\left(\frac{\mathbf{1 2}}{\boldsymbol{b}}\right) b^{3} & & \text { Substitute } \frac{12}{\boldsymbol{b}} \text { for } \boldsymbol{a} \text { in second equation. } \\
108 & =12 b^{2} & & \text { Simplify. } \\
9 & =b^{2} & & \text { Divide each side by } 12 . \\
3 & =b & & \text { Take the positive square root because } \boldsymbol{b}>0 .
\end{aligned}
$$

STEP 3 Determine that $a=\frac{12}{b}=\frac{12}{3}=4$. So, $y=4 \cdot 3^{x}$.

TRANSFORMING EXPONENTIAL DATA A set of more than two points (x, y) fits an exponential pattern if and only if the set of transformed points $(x, \ln y)$ fits a linear pattern.

