EXAMPLE 2 Solve a logarithmic inequality

Solve $\log _{2} x \leq 2$.

Solution

METHOD 1 Use a table

STEP 1 Enter the function $y=\log _{2} x$ into a graphing calculator as $y=\frac{\log x}{\log 2}$.

```
Y1Elog(X)/Llog(2)
Y2=
Y 3=
Y4=
Y4=
Y6=
```

STEP 2 Use the table feature to create a table of values. Identify the x-values for which $y \leq 2$. These x-values are given by $0<x \leq 4$.

Make sure that the x-values are reasonable and in the domain of the function $(x>0)$.

The solution is $0<x \leq 4$.

METHOD 2 Use a graph

Graph $y=\log _{2} x$ and $y=2$ in the same viewing window. Using the intersect feature, you can determine that the graphs intersect when $x=4$.

The graph of $y=\log _{2} x$ is on or below the graph of $y=2$ when $0<x \leq 4$.

The solution is $0<x \leq 4$.

PRACTICE

EXAMPLE 1
on p. 526
for Exs. 1-6

EXAMPLE 2
on p. 527
for Exs. 7-12

Solve the exponential inequality using a table and using a graph.

1. $3^{x} \leq 20$
2. $28\left(\frac{2}{3}\right)^{x}>9$
3. $244(0.35)^{x} \geq 50$
4. $-63(0.96)^{x}<-27$
5. $95(1.6)^{x} \leq 1620$
6. $-284\left(\frac{9}{7}\right)^{x}>-135$

Solve the logarithmic inequality using a table and using a graph.
7. $\log _{3} x \geq 3$
8. $\log _{5} x<2$
9. $\log _{6} x+9 \leq 11$
10. $2 \log _{4} x-1>4$
11. $-4 \log _{2} x>-20$
12. $0 \leq \log _{7} x \leq 1$
13. FINANCE You deposit $\$ 1000$ in an account that pays 3.5% annual interest compounded monthly. When is your balance at least $\$ 1200$?
14. RATES OF RETURN An investment that earns a rate of return r doubles in value in t years, where $t=\frac{\ln 2}{\ln (1+r)}$ and r is expressed as a decimal. What rates of return will double the value of an investment in less than 10 years?

