METHOD 2 Using a Graph You can also use a graph to solve the equation $5 \log D+2=12$.
STEP 1 Enter the functions $y=5 \log x+2$ and
$y=12$ into a graphing calculator.

```
1目 5 * log(X) +2
Y2目12
Y3=
Y3=
Y4=
Y5=
Y6=
Y7=
```

STEP 2 Graph the functions. Use the intersect feature to find the intersection point of the graphs. The graphs intersect at $(100,12)$.

$$
\begin{aligned}
& \text { Use a viewing window of } \\
& 0 \leq x \leq 150 \text { and } 0 \leq y \leq 20 .
\end{aligned}
$$

- To reveal stars with a magnitude of 12, a telescope must have an objective lens with a diameter of 100 millimeters.

Practice

EXPONENTIAL EQUATIONS Solve the equation

 using a table and using a graph.1. $8-2 e^{3 x}=-14$
2. $7-10^{5-x}=-9$
3. $e^{5 x-8}+3=15$
4. $1.6(3)^{-4 x}+5.6=6$

LOGARITHIMIC EQUATIONS Solve the equation using a table and using a graph.

5. $\log _{2} 5 x=2$
6. $\log (-3 x+7)=1$
7. $4 \ln x+6=12$
8. $11 \log (x+9)-5=8$
9. ECONOMICS From 1998 to 2003, the United States gross national product y (in billions of dollars) can be modeled by $y=8882(1.04)^{x}$ where x is the number of years since 1998. Use a table and a graph to find the year when the gross national product was $\$ 10$ trillion.
10. WRITING In Method 1 of Problem 1 on page 523, explain how you could use a table to find the solution of $4^{x}=11$ more precisely.
11. WHAT IF? In Problem 2 on page 524, suppose the telescope can reveal stars of magnitude 14. Find the diameter of the telescope's objective lens using a table and using a graph.
12. FINANCE You deposit $\$ 5000$ in an account that pays 3% annual interest compounded quarterly. How long will it take for the balance to reach $\$ 6000$? Solve the problem using a table and using a graph.
13. OCEANOGRAPHY The density d (in grams per cubic centimeter) of seawater with a salinity of 30 parts per thousand is related to the water temperature T (in degrees Celsius) by the following equation:

$$
d=1.0245-e^{0.1226 T-7.828}
$$

For deep water in the South Atlantic Ocean off Antarctica, $d=1.0241 \mathrm{~g} / \mathrm{cm}^{3}$. Use a table and a graph to find the water's temperature.

