Problem 2

ASTRONOMY The apparent

 magnitude of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude M of the dimmest star that can be seen with a telescope is given by the function

$$
M=5 \log D+2
$$

where D is the diameter (in millimeters) of the telescope's objective lens. If a telescope can reveal stars with a magnitude of 12 , what is the diameter of its objective lens?

METHOD 1 Using a Table Notice that the problem requires solving the following logarithmic equation:

$$
5 \log D+2=12
$$

One way to solve this equation is to make a table of values. You can use a graphing calculator to make the table.

STEP 1 Enter the function $y=5 \log x+2$ into a
graphing calculator.

STEP 2 Create a table of values for the function.
Make sure that the x-values are in the domain of the function $(x>0)$.

STEP 3 Scroll through the table of values to find
when $y=12$.
 when $x=100$.

- To reveal stars with a magnitude of 12, a telescope must have an objective lens with a diameter of 100 millimeters.

