60. TEMIENDEDSBERAONSE If X-rays of a fixed wavelength strike a material x centimeters thick, then the intensity $I(x)$ of the X-rays transmitted through the material is given by $I(x)=I_{0} e^{-\mu x}$, where I_{0} is the initial intensity and μ is a number that depends on the type of material and the wavelength of the X-rays. The table shows the values of μ for various materials. These μ-values apply to X-rays of medium wavelength.

Material	Aluminum	Copper	Lead
Value of μ	0.43	3.2	43

a. Find the thickness of aluminum shielding that reduces the intensity of X-rays to 30% of their initial intensity. (Hint: Find the value of x for which $I(x)=0.3 I_{0}$.)
b. Repeat part (a) for copper shielding.
c. Repeat part (a) for lead shielding.
d. Reasoning Your dentist puts a lead apron on you before taking X-rays of your teeth to protect you from harmful radiation. Based on your results from parts (a)-(c), explain why lead is a better material to use than aluminum or copper.
61. CHALLENGE You plant a sunflower seedling in your garden. The seedling's height h (in centimeters) after t weeks can be modeled by the function below, which is called a logistic function.

$$
h(t)=\frac{256}{1+13 e^{-0.65 t}}
$$

Find the time it takes the sunflower seedling to reach a height of 200 centimeters.

MIXED REVIEW FOR TAKS

TAKS PRACTICE at classzone.com

REVIEW
Lesson 4.1; TAKS Workbook

REVIEW

Skills Review
Handbook p. 994;
TAKS Workbook
62. TAKS PRACTICE Which list shows the functions in order from the widest graph to the narrowest graph? TAKS Obj. 5
(A) $y=-5 x^{2}, y=-\frac{2}{3} x^{2}, y=\frac{5}{6} x^{2}, y=8 x^{2}$
(B) $y=-\frac{2}{3} x^{2}, y=\frac{5}{6} x^{2}, y=-5 x^{2}, y=8 x^{2}$
(C) $y=\frac{5}{6} x^{2}, y=-\frac{2}{3} x^{2}, y=8 x^{2}, y=-5 x^{2}$
(D) $y=8 x^{2}, y=\frac{5}{6} x^{2}, y=-\frac{2}{3} x^{2}, y=-5 x^{2}$
63. TAKS PRACTICE In the diagram, $m \angle 2=m \angle 3$. What is $m \angle 1$? TAKS Obj. 6
(F) 136°
(G) 164°
(H) 174°
(J) 194°

