## EXAMPLE 7 Use a logarithmic model

## ANOTHER WAY

For an alternative method for solving the problem in Example 7, turn to page 523 for the Problem Solving Workshop.

ASTRONOMY The apparent magnitude of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude $M$ of the dimmest star that can be seen with a telescope is given by the function

where $D$ is the diameter (in millimeters) of the telescope's objective lens. If a telescope can reveal stars with a magnitude of 12 , what is the diameter of its objective lens?

## Solution

$$
\begin{aligned}
M & =5 \log D+2 & & \text { Write original equation. } \\
12 & =5 \log D+2 & & \text { Substitute } 12 \text { for } M . \\
10 & =5 \log D & & \text { Subtract } 2 \text { from each side. } \\
2 & =\log D & & \text { Divide each side by } 5 . \\
10^{2} & =10^{\log D} & & \text { Exponentiate each side using base } 10 . \\
100 & =D & & \text { Simplify. }
\end{aligned}
$$

- The diameter is 100 millimeters.


## AnimatedAlgebra at classzone.com

## Guided Practice for Example 7

11. WHAT IF? Use the information from Example 7 to find the diameter of the objective lens of a telescope that can reveal stars with a magnitude of 7 .

### 7.6 EXERCISES

HOMEWORK
KEY
= WORKED-OUT SOLUTIONS
on p. WS1 for Exs. 15, 35, and 57 - $=$ TAKS PRACTICE AND REASONING

Exs. 44, 47, 58, 60, 62, and 63
= MULTIPLE REPRESENTATIONS Ex. 59

## SKILL PRACTICE

1. VOCABULARY Copy and complete: The equation $5^{x}=8$ is an example of $\mathrm{a}(\mathrm{n})$ ? equation.
2. WRMRINENG When do logarithmic equations have extraneous solutions?

EXAMPLE 1
on p. 515
for Exs. 3-11

SOLVING EXPONENTIAL EQUATIONS Solve the equation.
3. $5^{x-4}=25^{x-6}$
4. $7^{3 x+4}=49^{2 x+1}$
5. $8^{x-1}=32^{3 x-2}$
6. $27^{4 x-1}=9^{3 x+8}$
7. $4^{2 x-5}=64^{3 x}$
8. $3^{3 x-7}=81^{12-3 x}$
9. $36^{5 x+2}=\left(\frac{1}{6}\right)^{11-x}$
10. $10^{3 x-10}=\left(\frac{1}{100}\right)^{6 x-1}$
11. $25^{10 x+8}=\left(\frac{1}{125}\right)^{4-2 x}$

