# EXAMPLE 7 Use a logarithmic model

**ASTRONOMY** The *apparent magnitude* of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude *M* of the dimmest star that can be seen with a telescope is given by the function



 $M = 5 \log D + 2$ 

where *D* is the diameter (in millimeters) of the telescope's objective lens. If a telescope can reveal stars with a magnitude of 12, what is the diameter of its objective lens?

### **ANOTHER WAY**

For an alternative method for solving the problem in Example 7, turn to page 523 for the **Problem Solving** Workshop.

## Solution

| $\boldsymbol{M} = 5 \log D + 2$  | Write original equation.              |  |
|----------------------------------|---------------------------------------|--|
| $12 = 5 \log D + 2$              | Substitute 12 for <i>M</i> .          |  |
| $10 = 5 \log D$                  | Subtract 2 from each side.            |  |
| $2 = \log D$                     | Divide each side by 5.                |  |
| $10^2 = 10^{\log D}$             | Exponentiate each side using base 10. |  |
| 100 = <i>D</i>                   | Simplify.                             |  |
| The diameter is 100 millimeters. |                                       |  |

Animated Algebra at classzone.com

## **GUIDED PRACTICE** for Example 7

**11. WHAT IF?** Use the information from Example 7 to find the diameter of the objective lens of a telescope that can reveal stars with a magnitude of 7.

7.6 EXERCISES



## **Skill Practice**

- **1. VOCABULARY** Copy and complete: The equation  $5^x = 8$  is an example of a(n) ? equation.
- 2. WRANKING When do logarithmic equations have extraneous solutions?

### EXAMPLE 1

on p. 515 for Exs. 3–11

#### **SOLVING EXPONENTIAL EQUATIONS** Solve the equation.

| <b>3.</b> $5^{x-4} = 25^{x-6}$                          | <b>4.</b> $7^{3x+4} = 49^{2x+1}$                     | <b>5.</b> $8^{x-1} = 32^{3x-2}$                      |
|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| <b>6.</b> $27^{4x-1} = 9^{3x+8}$                        | 7. $4^{2x-5} = 64^{3x}$                              | <b>8.</b> $3^{3x-7} = 81^{12-3x}$                    |
| <b>9.</b> $36^{5x+2} = \left(\frac{1}{6}\right)^{11-x}$ | 10. $10^{3x-10} = \left(\frac{1}{100}\right)^{6x-1}$ | 11. $25^{10x+8} = \left(\frac{1}{125}\right)^{4-2x}$ |