EXTRANEOUS SOLUTIONS Because the domain of a logarithmic function generally does not include all real numbers, be sure to check for extraneous solutions of logarithmic equations. You can do this algebraically or graphically.

ELIMINATE CHOICES
Instead of solving the equation in Example 6 directly, you can substitute each possible answer into the equation to see whether it is a solution.

What is (are) the solution(s) of $\log 8 x+\log (x-20)=3$?
(A) $-5,25$
(B) 5
(C) 25
(D) 5,25

Solution

$$
\begin{aligned}
\log 8 x+\log (x-20) & =3 & & \text { Write original equation. } \\
\log [8 x(x-20)] & =3 & & \text { Product property of logarithms } \\
10^{\log [8 x(x-20)]} & =10^{3} & & \text { Exponentiate each side using base } 10 . \\
8 x(x-20) & =1000 & & b^{\log _{b} x}=x \\
8 x^{2}-160 x & =1000 & & \text { Distributive property } \\
8 x^{2}-160 x-1000 & =0 & & \text { Write in standard form. } \\
x^{2}-20 x-125 & =0 & & \text { Divide each side by } 8 . \\
(x-25)(x+5) & =0 & & \text { Factor. } \\
x=25 \text { or } x & =-5 & & \text { Zero product property }
\end{aligned}
$$

CHECK Check the apparent solutions 25 and -5 using algebra or a graph.
Algebra Substitute 25 and -5 for x in the original equation.

$$
\begin{aligned}
\log 8 x+\log (x-20) & =3 \\
\log (8 \cdot 25)+\log (25-20) & \stackrel{?}{=} 3 \\
\log 200+\log 5 & \stackrel{?}{=} 3 \\
\log 1000 & \stackrel{?}{=} 3 \\
3 & =3
\end{aligned}
$$

$$
\log 8 x+\log (x-20)=3
$$

$$
\log [8(-5)]+\log (-5-20) \stackrel{?}{=} 3
$$

$$
\log (-40)+\log (-25) \stackrel{?}{=} 3
$$

Because $\log (-40)$ and $\log (-25)$ are not defined, -5 is not a solution.

So, 25 is a solution.
Graph Graph $y=\log 8 x+\log (x-20)$ and $y=3$ in the same coordinate plane. The graphs intersect only once, when $x=25$. So, 25 is the only solution.

- The correct answer is C. (A) (B) (C)

GUIDED PrActice for Examples 4, 5, and 6

Solve the equation. Check for extraneous solutions.

7. $\ln (7 x-4)=\ln (2 x+11)$
8. $\log _{2}(x-6)=5$
9. $\log 5 x+\log (x-1)=2$
10. $\log _{4}(x+12)+\log _{4} x=3$
