SOLVING LOGARITHMIC EQUATIONS Logarithmic equations are equations that involve logarithms of variable expressions. You can use the following property to solve some types of logarithmic equations.

KEY CONCEPT
 For Your Notebook

Property of Equality for Logarithmic Equations
Algebra If b, x, and y are positive numbers with $b \neq 1$, then $\log _{b} x=\log _{b} y$ if and only if $x=y$.

Example If $\log _{2} x=\log _{2} 7$, then $x=7$. If $x=7$, then $\log _{2} x=\log _{2} 7$.

EXAMPLE 4 Solve a logarithmic equation

Solve $\log _{5}(4 x-7)=\log _{5}(x+5)$.

$$
\begin{aligned}
\log _{5}(4 x-7) & =\log _{5}(x+5) & & \text { Write original equation. } \\
4 x-7 & =x+5 & & \text { Property of equality for logarithmic equations } \\
3 x-7 & =5 & & \text { Subtract } x \text { from each side. } \\
3 x & =12 & & \text { Add } 7 \text { to each side. } \\
x & =4 & & \text { Divide each side by } 3 .
\end{aligned}
$$

- The solution is 4 .

CHECK Check the solution by substituting it into the original equation.

$$
\begin{aligned}
\log _{5}(4 x-7) & =\log _{5}(x+5) & & \text { Write original equation. } \\
\log _{5}(4 \cdot 4-7) & \stackrel{?}{=} \log _{5}(4+5) & & \text { Substitute } 4 \text { for } x . \\
\log _{5} 9 & =\log _{5} 9 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

EXPONENTIATING TO SOLVE EQUATIONS The property of equality for exponential equations on page 515 implies that if you are given an equation $x=y$, then you can exponentiate each side to obtain an equation of the form $b^{x}=b^{y}$. This technique is useful for solving some logarithmic equations.

EXAMPLE 5 Exponentiate each side of an equation

Solve $\log _{4}(5 x-1)=3$.

$$
\begin{aligned}
\log _{4}(5 x-1) & =3 & & \text { Write original equation. } \\
4^{\log _{4}(5 x-1)} & =4^{3} & & \text { Exponentiate each side using base } 4 . \\
5 x-1 & =64 & & b^{\log _{b^{x}}}=\boldsymbol{x} \\
5 x & =65 & & \text { Add } 1 \text { to each side. } \\
x & =13 & & \text { Divide each side by } 5 .
\end{aligned}
$$

- The solution is 13 .

$$
\text { CHECK } \log _{4}(5 x-1)=\log _{4}(5 \cdot 13-1)=\log _{4} 64
$$

Because $4^{3}=64, \log _{4} 64=3 . ~ \checkmark$

