When it is not convenient to write each side of an exponential equation using the same base, you can solve the equation by taking a logarithm of each side.

EXAMPLE 2 Take a logarithm of each side

ANOTHER WAY

For an alternative method for solving the problem in Example 2, turn to page 523 for the Problem Solving Workshop.

Solve $4^{x}=11$.

$$
\begin{aligned}
4^{x} & =11 & & \text { Write original equation. } \\
\log _{4} 4^{x} & =\log _{4} 11 & & \text { Take } \log _{4} \text { of each side. } \\
x & =\log _{4} 11 & & \log _{b} \boldsymbol{b}^{x}=x \\
x & =\frac{\log 11}{\log 4} & & \text { Change-of-base formula } \\
x & \approx 1.73 & & \text { Use a calculator. }
\end{aligned}
$$

- The solution is about 1.73. Check this in the original equation.

NEWTON'S LAW OF COOLING An important application of exponential equations is Newton's law of cooling. This law states that for a cooling substance with initial temperature T_{0}, the temperature T after t minutes can be modeled by

$$
T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}
$$

where T_{R} is the surrounding temperature and r is the substance's cooling rate.

EXAMPLE 3 Use an exponential model

CARS You are driving on a hot day when your car overheats and stops running. It overheats at $280^{\circ} \mathrm{F}$ and can be driven again at $230^{\circ} \mathrm{F}$. If $r=0.0048$ and it is $80^{\circ} \mathrm{F}$ outside, how long (in minutes) do you have to wait until you can continue driving?

Solution

$$
\begin{aligned}
T & =\left(T_{0}-T_{R}\right) e^{-r t}+T_{R} \\
230 & =(280-80) e^{-0.0048 t}+80 \\
150 & =200 e^{-0.0048 t} \\
0.75 & =e^{-0.0048 t} \\
\ln 0.75 & =\ln e^{-0.0048 t} \\
-0.2877 & \approx-0.0048 t \\
60 & \approx t
\end{aligned}
$$

Newton's law of cooling
Substitute for $T, T_{0^{\prime}} T_{R^{\prime}}$ and r.
Subtract 80 from each side.
Divide each side by 200.
Take natural log of each side.
$\ln e^{x}=\log _{e} e^{x}=x$
Divide each side by $\mathbf{- 0 . 0 0 4 8}$.

- You have to wait about 60 minutes until you can continue driving.

Solve the equation.

4. $2^{x}=5$
5. $7^{9 x}=15$
6. $4 e^{-0.3 x}-7=13$
