When it is not convenient to write each side of an exponential equation using the same base, you can solve the equation by taking a logarithm of each side.

EXAMPLE 2 Take a logarithm of each side

ANOTHER WAY

For an alternative method for solving the problem in Example 2, turn to page 523 for the **Problem Solving Workshop**. Solve $4^{x} = 11$. $4^{x} = 11$ Write original equation. $\log_{4} 4^{x} = \log_{4} 11$ Take \log_{4} of each side. $x = \log_{4} 11$ $\log_{b} b^{x} = x$ $x = \frac{\log 11}{\log 4}$ Change-of-base formula $x \approx 1.73$ Use a calculator.

▶ The solution is about 1.73. Check this in the original equation.

NEWTON'S LAW OF COOLING An important application of exponential equations is *Newton's law of cooling*. This law states that for a cooling substance with initial temperature T_0 , the temperature T after t minutes can be modeled by

$$T = (T_0 - T_R)e^{-rt} + T_R$$

where T_{R} is the surrounding temperature and *r* is the substance's cooling rate.

EXAMPLE 3 Use an exponential model

CARS You are driving on a hot day when your car overheats and stops running. It overheats at 280°F and can be driven again at 230°F. If r = 0.0048 and it is 80°F outside, how long (in minutes) do you have to wait until you can continue driving?

Solution

$T = (T_0 - T_R)e^{-rt} + T_R$	Newton's law of cooling
$230 = (280 - 80)e^{-0.0048t} + 80$	Substitute for <i>T</i> , $T_{0'}$, $T_{R'}$ and <i>r</i> .
$150 = 200e^{-0.0048t}$	Subtract 80 from each side.
$0.75 = e^{-0.0048t}$	Divide each side by 200.
$\ln 0.75 = \ln e^{-0.0048t}$	Take natural log of each side.
$-0.2877 \approx -0.0048t$	$\ln e^x = \log_e e^x = x$
$60 \approx t$	Divide each side by -0.0048.

> You have to wait about 60 minutes until you can continue driving.

-	GUIDED PRACTICE	for Examples 2 and 3	
	Solve the equation.		0.2
	4. $2^x = 5$	5. $7^{9x} = 15$	6. $4e^{-0.3x} - 7 = 13$