7.6 Solve Exponential and Logarithmic Equations
 2A.11.A, 2A.11.C,
 2A.11.D, 2A.11.F

Before Now Why? You studied exponential and logarithmic functions. You will solve exponential and logarithmic equations. So you can solve problems about astronomy, as in Example 7.

Key Vocabulary

- exponential equation
- logarithmic equation
- extraneous solution, p. 52

Exponential equations are equations in which variable expressions occur as exponents. The result below is useful for solving certain exponential equations.

KEY CONCEPT

For Your Notebook

Property of Equality for Exponential Equations

Algebra If b is a positive number other than 1 , then $b^{x}=b^{y}$ if and only if $x=y$.
Example If $3^{x}=3^{5}$, then $x=5$. If $x=5$, then $3^{x}=3^{5}$.

EXAMPLE 1 Solve by equating exponents

Solve $4^{x}=\left(\frac{1}{2}\right)^{x-3}$.

$$
\begin{aligned}
4^{x} & =\left(\frac{1}{2}\right)^{x-3} & & \text { Write original equation. } \\
\left(2^{2}\right)^{x} & =\left(2^{-1}\right)^{x-3} & & \text { Rewrite } 4 \text { and } \frac{1}{2} \text { as powers with base } 2 . \\
2^{2 x} & =2^{-x+3} & & \text { Power of a power property } \\
2 x & =-x+3 & & \text { Property of equality for exponential equations } \\
x & =1 & & \text { Solve for } \boldsymbol{x} .
\end{aligned}
$$

- The solution is 1 .

CHECK Check the solution by substituting it into the original equation.

$$
\begin{aligned}
4^{1} & \stackrel{?}{=}\left(\frac{1}{2}\right)^{1-3} & & \text { Substitute } 1 \text { for } x . \\
4 & \stackrel{?}{=}\left(\frac{1}{2}\right)^{-2} & & \text { Simplify. } \\
4 & =4 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

Guided Practice for Example 1

Solve the equation.

1. $9^{2 x}=27^{x-1}$
2. $100^{7 x+1}=1000^{3 x-2}$
3. $81^{3-x}=\left(\frac{1}{3}\right)^{5 x-6}$
